1,905 research outputs found

    A Review of Biotechnological Artemisinin Production in Plants

    Get PDF
    Malaria is still an eminent threat to major parts of the world population mainly in sub-Saharan Africa. Researchers around the world continuously seek novel solutions to either eliminate or treat the disease. Artemisinin, isolated from the Chinese medicinal herb Artemisia annua, is the active ingredient in artemisinin-based combination therapies used to treat the disease. However, naturally artemisinin is produced in small quantities, which leads to a shortage of global supply. Due to its complex structure, it is difficult chemically synthesize. Thus to date, A. annua remains as the main commercial source of artemisinin. Current advances in genetic and metabolic engineering drives to more diverse approaches and developments on improving in planta production of artemisinin, both in A. annua and in other plants. In this review, we describe efforts in bioengineering to obtain a higher production of artemisinin in A. annua and stable heterologous in planta systems. The current progress and advancements provides hope for significantly improved production in plants

    Bodies, building and bricks: Women architects and builders in eight eco-communities in Argentina, Britain, Spain, Thailand and USA

    Get PDF
    Eco-building is a male domain where men are presumed to be better builders and designers, more men than women build and women find their design ideas and contributions to eco-building are belittled. This article suggests that a focus on bodies, embodiment and the ‘doing’ of building is a potentially productive way to move beyond current gender discrimination. This article makes three key interventions using empirical material from eight case studies of eco-communities in Britain, Thailand, Spain, the USA and Argentina. First, it uses a focus on eco-communities to illustrate the enduring persistence of gender divisions in architecture and building. Second, by using multi-site examples of eco-communities from diverse countries this article finds more commonalities than differences in gender discrimination across cultures and nationalities. Third, it outlines three spaces of opportunity through which more gender-neutral approaches are being developed in eco-building: (1) in challenging the need for ‘strong’ bodies, (2) by practising more embodied ways of building and (3) by making visible women's bodies in building. The ‘doing’ and manual aspect of eco-building is unfamiliar for many (not just women) and interviewees commented on the need to (re)learn how to be practical and to understand the physical possibilities (and limitations) of their bodies

    Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports

    Get PDF
    We demonstrate a new class of hollow-core Bragg fibers that are composed of concentric cylindrical silica rings separated by nanoscale support bridges. We theoretically predict and experimentally observe hollow-core confinement over an octave frequency range. The bandwidth of bandgap guiding in this new class of Bragg fibers exceeds that of other hollow-core fibers reported in the literature. With only three rings of silica cladding layers, these Bragg fibers achieve propagation loss of the order of 1 dB/m.Comment: 9 pages including 5 figure

    Biopsy-based optimization and calibration of a signal-intensity-ratio-based MRI method (1.5 Tesla) in a dextran-iron loaded mini-pig model, enabling estimation of very high liver iron concentrations

    Get PDF
    OBJECTIVE: Magnetic resonance imaging (MRI)-based techniques for non-invasive assessing liver iron concentration (LIC) in patients with iron overload have a limited upper measuring range around 35 mg/g dry weight, caused by signal loss from accelerated T1-, T2-, T2* shortening with increasing LIC. Expansion of this range is necessary to allow evaluation of patients with very high LIC. AIM: To assess measuring range of a gradient-echo R2* method and a T1-weighted spin-echo (SE), signal intensity ratio (SIR)-based method (TE = 25 ms, TR = 560 ms), and to extend the upper measuring range of the SIR method by optimizing echo time (TE) and repetition time (TR) in iron-loaded minipigs. METHODS: Thirteen mini pigs were followed up during dextran-iron loading with repeated percutaneous liver biopsies for chemical LIC measurement and MRIs for parallel non-invasive estimation of LIC (81 examinations) using different TEs and TRs. RESULTS: SIR and R2* method had similar upper measuring range around 34 mg/g and similar method agreement. Using TE = 12 ms and TR = 1200 ms extended the upper measuring range to 115 mg/g and yielded good method of agreement. DISCUSSION: The wider measuring range is likely caused by lesser sensitivity of the SE sequence to iron, due to shorter TE, leading to later signal loss at high LIC, allowing evaluation of most severe hepatic iron overload. Validation in iron-loaded patients is necessary

    Ising model for distribution networks

    Full text link
    An elementary Ising spin model is proposed for demonstrating cascading failures (break-downs, blackouts, collapses, avalanches, ...) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidary environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters

    Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918

    Get PDF
    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized

    A participatory physical and psychosocial intervention for balancing the demands and resources among industrial workers (PIPPI): study protocol of a cluster-randomized controlled trial

    Get PDF
    Background: Need for recovery and work ability are strongly associated with high employee turnover, well-being and sickness absence. However, scientific knowledge on effective interventions to improve work ability and decrease need for recovery is scarce. Thus, the present study aims to describe the background, design and protocol of a cluster randomized controlled trial evaluating the effectiveness of an intervention to reduce need for recovery and improve work ability among industrial workers. Methods/Design: A two-year cluster randomized controlled design will be utilized, in which controls will also receive the intervention in year two. More than 400 workers from three companies in Denmark will be aimed to be cluster randomized into intervention and control groups with at least 200 workers (at least 9 work teams) in each group. An organizational resources audit and subsequent action planning workshop will be carried out to map the existing resources and act upon initiatives not functioning as intended. Workshops will be conducted to train leaders and health and safety representatives in supporting and facilitating the intervention activities. Group and individual level participatory visual mapping sessions will be carried out allowing team members to discuss current physical and psychosocial work demands and resources, and develop action plans to minimize strain and if possible, optimize the resources. At all levels, the intervention will be integrated into the existing organization of work schedules. An extensive process and effect evaluation on need for recovery and work ability will be carried out via questionnaires, observations, interviews and organizational data assessed at several time points throughout the intervention period. Discussion: This study primarily aims to develop, implement and evaluate an intervention based on the abovementioned features which may improve the work environment, available resources and health of industrial workers, and hence their need for recovery and work ability

    The transition from the adiabatic to the sudden limit in core level photoemission: A model study of a localized system

    Full text link
    We consider core electron photoemission in a localized system, where there is a charge transfer excitation. The system is modelled by three electron levels, one core level and two outer levels. The model has a Coulomb interaction between these levels and the continuum states into which the core electron is emitted. The model is simple enough to allow an exact numerical solution, and with a separable potential an analytic solution. We calculate the ratio r(omega) between the weights of the satellite and the main peak as a function of the photon energy omega. The transition from the adiabatic to the sudden limit takes place for quite small photoelectron kinetic energies. For such small energies, the variation of the dipole matrix element is substantial and described by the energy scale Ed. Without the coupling to the photoelectron, the corresponding ratio r0(omega) is determined by Ed and the satellite excitation energy dE. When the interaction potential with the continuum states is introduced, a new energy scale Es=1/(2Rs^2) enters, where Rs is a length scale of the interaction potential. At threshold there is typically a (weak) constructive interference between intrinsic and extrinsic contributions, and the ratio r(omega)/r0(omega) is larger than its limiting value for large omega. The interference becomes small or weakly destructive for photoelectron energies of the order Es. For larger energies r(omega)/r0(omega) therefore typically has a weak undershoot. If this undershoot is neglected, r(omega)/r0(omega) reaches its limiting value on the energy scale Es.Comment: 18 pages, latex2e, 13 eps figure
    • …
    corecore