47,403 research outputs found

    Semiclassical Study on Tunneling Processes via Complex-Domain Chaos

    Get PDF
    We investigate the semiclassical mechanism of tunneling process in non-integrable systems. The significant role of complex-phase-space chaos in the description of the tunneling process is elucidated by studying a simple scattering map model. Behaviors of tunneling orbits are encoded into symbolic sequences based on the structure of complex homoclinic tanglement. By means of the symbolic coding, the phase space itineraries of tunneling orbits are related with the amounts of imaginary parts of actions gained by the orbits, so that the systematic search of significant tunneling orbits becomes possible.Comment: 26 pages, 28 figures, submitted to Physical Review

    Monte Carlo Simulations of Globular Cluster Evolution - II. Mass Spectra, Stellar Evolution and Lifetimes in the Galaxy

    Get PDF
    We study the dynamical evolution of globular clusters using our new 2-D Monte Carlo code, and we calculate the lifetimes of clusters in the Galactic environment. We include the effects of a mass spectrum, mass loss in the Galactic tidal field, and stellar evolution. We consider initial King models containing N = 10^5 - 3x10^5 stars, and follow the evolution up to core collapse, or disruption, whichever occurs first. We find that the lifetimes of our models are significantly longer than those obtained using 1-D Fokker-Planck (F-P) methods. We also find that our results are in very good agreement with recent 2-D F-P calculations, for a wide range of initial conditions. Our results show that the direct mass loss due to stellar evolution can significantly accelerate the mass loss through the tidal boundary, causing most clusters with a low initial central concentration (Wo <~ 3) to disrupt quickly in the Galactic tidal field. Only clusters born with high initial central concentrations (Wo >~ 7) or steep initial mass functions are likely to survive to the present and undergo core collapse. We also study the orbital characteristics of escaping stars, and find that the velocity distribution of escaping stars in collapsing clusters looks significantly different from the distribution in disrupting clusters. We calculate the lifetime of a cluster on an eccentric orbit in the Galaxy, such that it fills its Roche lobe only at perigalacticon. We find that such an orbit can extend the lifetime by at most a factor of a few compared to a circular orbit in which the cluster fills its Roche lobe at all times.Comment: 32 pages, including 10 figures, to appear in ApJ, minor corrections onl

    Altitude variations of cosmic-ray soft and hard components observed by airborne detectors

    Get PDF
    The altitude variations of cosmic-ray total and hard components were measured up to 12,000 m on board a jet liner over Japan island on December, 1981. Observed results together with soft component are presented comparing with the model calculations through the atmosphere by applying the hadronic cascade

    Modified Spin Wave Analysis of Low Temperature Properties of Spin-1/2 Frustrated Ferromagnetic Ladder

    Full text link
    Low temperature properties of the spin-1/2 frustrated ladder with ferromagnetic rungs and legs, and two different antiferromagnetic next nearest neighbor interaction are investigated using the modified spin wave approximation in the region with ferromagnetic ground state. The temperature dependence of the magnetic susceptibility and magnetic structure factors is calculated. The results are consistent with the numerical exact diagonalization results in the intermediate temperature range. Below this temperature range, the finite size effect is significant in the numerical diagonalization results, while the modified spin wave approximation gives more reliable results. The low temperature properties near the limit of the stability of the ferromagnetic ground state are also discussed.Comment: 9 pages, 8 figure

    Simulations of the Interaction Region in a Photon-Photon Collider

    Get PDF
    The status and initial performance of a simulation program CAIN for interaction region of linear colliders is described. The program is developed to be applicable for e+e-, e-e-, e-gamma and gamma-gamma linear colliders. As an example of an application, simulation of a gamma-gamma collider option of NLC is reported.Comment: 16 pages, 6 eps figures, use epsf.st

    Optimal design of injection mold for plastic bonded magnet

    Get PDF
    The optimal design of an injection mold for producing a stronger multipole magnet is carried out using the finite element method and the direct search method. It is shown that the maximum flux density in the cavity obtained by the optimal design is about 2.6 times higher than that of the initial shape determined empirically. 3-D analysis of the nonlinear magnetic field in the injection mold with complicated structure is also carried out. The calculated flux distribution on the cavity surface is in good agreement with the measured one</p

    Integrable Magnetic Model of Two Chains Coupled by Four-Body Interactions

    Full text link
    An exact solution for an XXZ chain with four-body interactions is obtained and its phase diagram is determined. The model can be reduced to two chains coupled by four-body interactions, and it is shown that the ground state of the two-chain model is magnetized in part. Furthermore, a twisted four-body correlation function of the anti-ferromagnetic Heisenberg chain is obtained.Comment: 7 pages, LaTeX, to be published in J. Phys. Soc. Jpn., rederived the mode
    • …
    corecore