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We investigate the semiclassical mechanism of tunneling processes in nonintegrable systems. The significant
role of complex-phase-space chaos in the description of the tunneling processes is elucidated by studying a
kicked scattering model. Behaviors of tunneling orbits are encoded into symbolic sequences based on the
structure of a complex homoclinic tangle. By means of the symbolic coding, the phase space itineraries of
tunneling orbits are related with the amounts of imaginary parts of actions gained by the orbits, so that the
systematic search of dominant tunneling orbits becomes possible.
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I. INTRODUCTION

Tunneling is one of the most typical and important phe-
nomena in quantum physics, and for the past several years
there is growing interest in natures of tunneling processes
inherent in multidimensions. Quantum properties in multidi-
mensional systems have been investigated extensively in
terms of classical dynamical concepts in the field ofquantum
chaos@1#, where the role of chaos, which is a generic prop-
erty in multidimensional classical systems, has been eluci-
dated. It was found that quantum tunnelings are also strongly
influenced by whether underlying classical dynamics is cha-
otic or not @2–8#, though tunneling processes have no clas-
sical counterpart.

Tunneling occurs typically between classical invariant
components separated in phase space, such as between regu-
lar tori or chaotic seas. On one hand, mechanism of tunnel-
ing between distinct tori separated by chaotic seas has been
studied in the context ofchaos-assisted tunneling@4#, and its
semiquantum analysis has been done, in which the diffusion
process in the chaotic sea accompanied with tunneling paths
from and into the tori around the boundaries of the sea is
considered to dominate the tunneling transport@6#. Experi-
ments have also been performed by measuring microwave
spectra in the superconducting cavity@9# and measuring mo-
mentum distributions of cold atoms, which was theoretically
proposed in Ref.@10#, in an amplitude-modulated standing
wave of light @11,12#.

On the other hand, tunneling between two chaotic seas
separated by an energy barrier was studied by symmetric
double wells@7#. It was shown that the spectra of tunnel
splittings are reproduced by the orbits which consist of in-
stanton processes under the barrier and homoclinic explora-
tions in each chaotic well.

Generic aspects of the link between tunneling processes
and real-domain ones in nonintegrable systems were exam-
ined in oscillatory scattering systems@13#. They made an
energy-domain analysis for a model with continuous flows,
while in the present study we make a time-domain one for a

scattering map. The semiclassical interpretation of compli-
cated wave functions was given in terms of oscillations of
the stable manifold and an inherent property in flow systems,
the divergent behavior of movable singularities of classical
solutions on a complex time plane.

In the near-integrable regime, the role of resonances has
been elucidated in the tunneling transport between symmet-
ric tori by means of classical and quantum perturbation theo-
ries @14#.

In any case, if one wants to know the mechanism of tun-
neling in chaotic systems by relating it with underlying clas-
sical structures, the use of complex orbits is inevitable@15#,
since tunneling is a purely quantum-mechanical process and
is not describable in terms of real classical dynamics. Full
account of such a process should, therefore, be given by
complex classical dynamics. An attempt to make a full com-
plex semiclassical analysis using the complex classical dy-
namics has been performed to understand which kinds of
complex trajectories describe characteristic features of tun-
neling in the presence of chaos, and how the complex clas-
sical dynamics actually enters into real physical processes
@5,16,17#.

In Ref. @5#, it was found that the initial values of orbits
which play a semiclassically primary role form chainlike
structures on an initial-value plane. A phenomenology de-
scribing tunneling in the presence of chaos based on such
structures has been developed.

In Ref. @16#, the first evidence was reported which dem-
onstrates a crucial role ofcomplex-phase-space chaosin the
description of tunneling processes by analyzing a kicked
scattering model. A hierarchy was found in the configura-
tions of chainlike structures on the initial-value plane, and
was interpreted as the manifestation of the emergence of
chaos in the complex domain.

Very recently, the chainlike structures were shown to be
closely related to theJulia setin complex dynamical systems
@18#. The Julia set is defined as the boundary between the
orbits which diverge to infinity and those which are bound
for an indefinite time. Chaos occurs only on the Julia set
@19#. In Ref. @18#, it was proved that a class of orbits which
potentially contribute to semiclassical wave functions is
identified as the Julia set. It was also shown that the transi-*Electronic address: t_onishi@comp.metro-u.ac.jp
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tivity of dynamics and high density of trajectories on the
Julia set characterize chaotic tunneling.

However, there still remains a problem in complex semi-
classical descriptions. Dominant tunneling orbits are always
characterized by a property that the amounts of imaginary
parts of classical actions gained by the orbits are minimal
among the whole candidates. It is, however, difficult to find
such dominant orbits out of the candidates, because an expo-
nential increase of the number of candidates with time pre-
vents us from evaluating the amount of imaginary part of
action for every candidate.

To solve this problem, in this paper, we investigate the
structure of complex phase space for a kicked scattering
model, and relate the structure to the amounts of imaginary
parts of actions gained by tunneling orbits. Our main idea is
to relate the symbolic dynamics of a homoclinic tangle
emerging in complex domain to the behavior of tunneling
orbits. It enables us to estimate the imaginary parts of actions
gained by the orbits from symbolic sequences.

The organization of the paper is as follows. In Sec. II, the
symbolic description of tunneling orbits is developed. This
description requires an effective symbolic dynamics con-
structed on a complex homoclinic tangle. In this section, we
emphasize the importance of the application of symbolic dy-
namics to tunneling problems, and the details of how we
construct the symbolic dynamics itself is deferred to Sec. III.
So it should be noted that in Sec. II we use the results in Sec.
III without any technical details.

More precisely, in Sec. II, tunneling processes are inves-
tigated by a time-domain approach of complex semiclassical
method. We introduce a scattering map which would be the
simplest possible map modeling an energy-barrier tunneling
in more than one degree of freedom. Though real-domain
chaos is absent in this model, it is shown that tunneling wave
functions exhibit the features possessed by the tunneling
ones in the presence of real-domain chaos, such as the exis-
tence of plateaus and cliffs in the tunneling amplitudes and
erratic oscillations on the plateaus.

It is elucidated that such tunneling features originate from
chaotic classical dynamics in the complex domain; in other
words, the emergence of a homoclinic tangle in the complex
domain. The symbolic description of the tangle is introduced
and is applied to the symbolic encoding of the behaviors
exhibited by semiclassical candidate orbits. The amounts of
imaginary parts of actions gained by the orbits are evaluated
in terms of symbolic sequences assigned to the initial points
of the orbits. Dominant tunneling orbits are determined ac-
cording to the evaluated actions.

In the final part of Sec. II, tunneling wave functions are
reproduced in terms of such dominant orbits, and the char-
acteristic features appearing in tunneling amplitudes are ex-
plained by the interference among such dominant orbits.

In Sec. III, the technical aspects which are skipped in Sec.
II are described in full detail. We first investigate the con-
struction of a partition of complex phase space, which en-
codes the homoclinic points into symbolic sequences. Then
some numerical observations are presented which relates the
symbolic sequences and the locations of homoclinic points in
phase space. On the basis of the observations, we study the

relation between the symbolic sequences and the imaginary
parts of actions for the homoclinic orbits. A symbolic for-
mula for the estimation of imaginary parts of actions is fi-
nally derived.

In Sec. IV, we first conclude our present study, and then
discuss the role of complex-domain chaos played in semi-
classical descriptions of tunneling processes in nonintegrable
systems. In a wide range of the tunneling processes, the im-
portant role of the complex-domain chaos is suggested. Fi-
nally some future problems are presented.

II. SEMICLASSICAL STUDY ON TUNNELING
PROCESSES VIA COMPLEX-DOMAIN CHAOS

A. Tunneling in a kicked scattering model

We introduce a model which will be used in our study.
The Hamiltonian of the model is given as follows:

H~q,p,t !5T~p!1V~q! (
n52`

1`

d~ t2n!, ~1a!

T~p!5p2/2, ~1b!

V~q!5k exp~2gq2!, ~1c!

wherek andg are some parameters with positive values, and
the height and width of an energy barrier are given byk and
1/A2g, respectively. A set of classical equations of motion is
given by

~qj 11 ,pj 11!5 f ~qj ,pj !, ~2a!

f :R2→R2u~q,p!°„q1T8~p!,p2V8~q1p!…, ~2b!

where j is an integer denoting a time step and the prime
denotes a differentiation with respect to the corresponding
argument.R2 denotes real phase space.

This model has the following characteristics. First, no
chaotic motion and no periodic orbit except a fixed point
(q,p)5(0,0) is found in real phase space, in contrast to, e.g.,
the real phase space of the standard map@20#. Such a simple
situation can always be realized whenV(q) is unimodal~see
Appendix A!. Of course, topological entropy in real phase
space is null. Second, no singularity is found in the solutions
of Eq. ~2! when f is extended toC2, since ourV(q) is an
entire function. As seen later, the structure of complex phase
space is our main concern. However, the singularities would
make the structure overcomplicated. The present study fo-
cuses on the features of wave functions which are observed
irrespective of the existence of singularities inV(q), e.g.,
observed for ourV(q) andV(q)5k sech2gq which has sin-
gularities at q5 ip(n11/2)/g (k,g.0,nPZ). Hence our
model is suitable to study typical aspects of energy-barrier-
tunneling processes without real-domain chaos. For our
analysis to be generic, consideration must be given to the
case of real-domain chaos. In the aspect of the number of
semiclassically significant orbits, differences do exist be-
tween such case and our case, as mentioned in Sec. II F.
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However, the study in our case is necessary for the first step
to the semiclassical understanding of energy-barrier tunnel-
ing in nonintegrable systems.

Figure 1~a! shows the real phase space of our model. The
stable and unstable manifolds of the fixed point at the origin
are denoted byW s andW u, respectively. As a direct conse-
quence of the absence of real-domain chaos, both manifolds
do not create homoclinic intersections.

The quantum-mechanical propagation for a single time
step is given by the unitary operator

Û5expF2
i

\
V~ q̂!GexpF2

i

\
T~ p̂!G , ~3!

where q̂ and p̂ denote position and momentum operators,
respectively, which satisfy the uncertainty relation@ q̂,p̂#
5 i\. An incident wave packet is given by a coherent state of
the form

^quqa ,pa&5
1

~p\s2!1/4
expF2

~q2qa!2

2\s2
2 i

pa~qa22q!

2\ G ,

~4!

wheres is a positive parameter and the width of the wave
packet in theq direction is given byA\s. qa andpa are the
position and momentum of the center of mass, respectively.
Figure 1~b! shows the propagation of the wave packet@see
also Fig. 6~a! for an enlarged one#.

Our semiclassical argument based on the analysis formu-
lated in Sec. II B requires a large amount of numerical trial
and errors even for a single set of parameter values.
Throughout the present study, we fixed the parameters
k,g,s,qa ,pa , and\, as given in Fig. 1. The parameter val-
ues selected here are favorable to us in the following senses.
First, \51 realizes large tunneling amplitudes, though the
system is in the semiclassical regime. In fact, it is observed
that the minimum tunneling actions@;101; see the caption
of Fig. 6~b!# are much smaller than the characteristic action
of real-domain classical dynamics (;102), as given in the
caption of Fig. 1~b!. The instanton trajectory of an integrable
limit with null energy has the imaginary part of action,
Im*2`

1`@T(p)2V(q)#p21dq5A4pk/g'1121, however,
this action is not useful for estimating the minimum tunnel-
ing actions in our time-domain approach. Second, largek
makes complex classical dynamics highly unstable and then
allows us to discuss the symbolic coding of complex orbits.
The other parameters were selected to fit simultaneously the
configuration of scattering problems and our requirements
that tunneling processes occur as early as possible in order to
reduce the amount of semiclassical computations.

Tunneling wave functions in Fig. 1~b! exhibit amplitude
crossovers, plateaus and cliffs, and erratic oscillations on the
plateaus. The same features have been reported in the case of
dynamical tunneling processes in mixed phase space@5#.
These are called the ‘‘plateau-cliff structure,’’ which has
been confirmed in several systems as a typical structure of
tunneling wave functions in the presence of real-domain
chaos@5#. However, as seen in our model, the existence of
the plateau-cliff structure does not always need chaotic dy-
namics in real phase space. So, the features of wave func-
tions observed here would be beyond our intuitive expecta-
tion based on the real classical dynamics. This strongly
motivates the use of complex trajectories and complex semi-
classical analysis.

B. Formulation of complex semiclassical analysis

To simplify our formulation, we begin with the definition
of a pair of canonical variables

~Q,P!5
s

A2
~2 ip1qs22,p2 iqs22!. ~5!

For (q0 ,p0) and (qa ,pa), which are the initial values of the
map f and the center of wave packet~4!, respectively, we
denote

~Q0 ,P0!5„Q~q0 ,p0!, P~q0 ,p0!…, ~6a!

FIG. 1. ~a! Real-domain stable and unstable manifolds of the
origin (k5500, g50.005). The origin is an unstable fixed point
when k,g.0. ~b! The time dependence of the wave function,
evaluated quantum mechanically forn50 –12 in every four time
steps@\51, s510, qa52123, pa523, with the samek andg as
in ~a!#. Dotted lines representq50. The center of mass, whose
positions are indicated by arrows, is reflected by the potential bar-
rier, and so the amplitudes observed in the transmitted region rep-
resent tunneling effects. A characteristic action of the classical sys-
tem, which we evaluated numerically by the phase-space area
corresponding to a single oscillation of the stable manifold@the
hatched area in~a!#, is 153.
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~Qa ,Pa!5„Q~qa ,pa!,P~qa ,pa!…. ~6b!

The wave function̂ quUnuqa ,pa& is represented by the
n-fold multiple integral

AnE dq0•••dqn21exp
i

\
Sn , ~7!

which is a discrete analog of Feynman path integral, where

An5~p\s2!21/4~2p i\!2n/2, ~8a!

Sn5(
j 50

n

L j , ~8b!

L j5T~pj 21!2V~qj !~ j >1,pj 215qj2qj 21!, ~8c!

L05 i ~q02c1Pa!~q02c2Pa!/~2s2!2QaPa/2

@c65 is~A261!#. ~8d!

The saddle point approximation for the integral is imple-
mented to derive the semiclassical Van Vleck’s formula, in
which the wave function is expressed by purely classical-
dynamical quantities. Each saddle point (q0 , . . . ,qn21)
PCn should satisfy a set of classical equations of motion and
boundary conditions

~qj 11 ,pj 11!5 f ~qj ,pj ! ~0< j ,n!, ~9a!

~q0 ,p0! PI, ~9b!

~qn ,pn!PF, ~9c!

where f :C2→C2 is the classical map extended into complex
phase space, andI, F stand for manifolds defined by

I5$~q,p!PC2uP~q,p!5Pa%, ~10a!

F5$~q,p!PC2uIm q50%. ~10b!

Since the initial ‘‘momentum’’P0 is fixed by Eq.~10a!, the
shooting problem~9! will be solved by adjusting the initial
‘‘position’’ Q0 in I. Condition~9c! is required since we want
to see here the wave function as a function of a real final
positionqn . A set of initial points satisfying Eqs.~9! is given
by

Mn5Iù f 2n~F!. ~11!

Then the semiclassical Van Vleck’s formula of
^qnuUnuqa ,pa& takes the form

~2p\!21/4 (
(q0 ,p0)PMn

U ]2Gn

]qn]Pa
U1/2

exp
i

\ S Sn2
fn

2 D ,

~12!

where the sum is over the complex orbits whose initial points
are located onMn just defined.fn(q0 ,p0) is the Maslov
index of each complex orbit.Gn(qn ,P0)5Sn1 i (q0
2c1P0)(q02c2P0)/(2s2) is a generating function which

yields a set of canonical transformations]Gn /]qnuP0
5pn

and]Gn /]P0uqn
52Q0. The outline of the derivation of Eq.

~12! follows the conventional one@21#, so we omit the de-
scription of it. For details, readers refer to the Appendix of
Ref. @5#.

C. Hierarchical configuration of initial values

The complex phase space of model~1! has a complicated
structure in contrast to the real phase space. Figure 2~a!
shows a typical pattern ofMn , which consists of a huge
number of strings. The finest scale structure ofMn is shown
schematically in Fig. 2~b!. Each string covers the whole
range (2`,1`) of the finalqn axis, so we call it abranch.
In the latter figure, branches are linked to each other in the
horizontal direction with narrow gaps, and they are said to
form a chainlike structure@5,16# ~the authors in Ref.@5#
called it a Laputa chain!. Our classical and semiclassical
discussions are concerned with the branches which form
chainlike structures. The other branches are found in both
sides of each chainlike structure, which look like a pair of
sea anemones as shown in the left-hand inset of Fig. 2~a!
@they are omitted in Figs. 2~b! and 2~d!#. The semiclassical
contribution from them is negligible, see the discussion in
Sec. II F. Here we will explain the morphology ofMn in
terms of these notions, and by relating it to the manifoldsW s

and W u which are extended to the complex domain. More
precisely, the following three facts will be explained: First,
the chainlike structure is created by the orbits propagating
alongW s andW u; second, branches inMn have a hierar-
chical configuration onI; and third, the intersection

M5IùW s, ~13!

is the main frame of the configuration of branches. Hereafter
we identify C2 with R4, and mean a ‘‘curve’’ as a one-
dimensional manifold inR4, and a ‘‘disk’’ as a two-
dimensional one in there.

When the mapf in Eqs. ~2! is extended toC2, both W s

andW u are two-dimensional manifolds in there at least lo-
cally. SinceI is also a two-dimensional manifold, the dimen-
sion of the intersectionM is lower than 1 in general, i.e., the
intersection is neither a set of curves nor a surface, but may
be fractal such as the Cantor set, the Hausdorf dimension of
which is less than one.

We begin with the creation of the chainlike structure. For
a point in W s denoted byw and a small diskD which in-
cludes w, the dynamics ofD is described as follows. By
definition, the orbit ofw converges to the origin. Alsof k(D)
first approaches the origin ask increases, however, it in turn
spreads alongW u, and finally almost converges toW u.

This process is described in more detail. Fork@1, the
intersection betweenf k(D) and the neighborhood off k(w) is
approximated by a small diskD8 which is tangent toW u at
the origin. Then the points onD8 are parametrized by a small
complex numberz such that „q(z),p(z)…5„z,(l21)z…,
wherel is the maximal eigenvalue of the tangent map off at
the origin and is a real number. Theq component of
f m
„q(z),p(z)…, denoted byqm(z), is a holomorphic function
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of z for any m.0. Then due to the reflection principle of
holomorphic functions, the intersectionD8ù f 2m(F) @see
Eq. ~10! for the definition ofF] includes, on thez plane, the
real axis Imz50, and a set of curves symmetric about the
axis and perpendicular to the axis at the points satisfying
dqm(z)/dz50.

The approximation used above allows one to consider that
Dù f 2n(F) for n5k1m includes f 2k

„D8ù f 2m(F)…. Re-
placing f k aroundw by its linear approximation, and taking
Q0 as a coordinate onD, one can relateQ0 and z linearly.

Then in a similar way,Dù f 2n(F) includes, on theQ0 plane,
a line throughw and a set of curves symmetric about the line
and perpendicular to the line at the points satisfying
dqn(Q0)/dQ050. The last equation is equivalent to the con-
dition which defines caustics onI in the original problem
~9!. Finally, by takingD on I, the configuration of a line and
curves on theQ0 plane just described explains the creation of
a chainlike structure.

The mechanism mentioned above suggests that chainlike
structures are created around any elements ofM as the time

FIG. 2. ~a! Mn for n510 plotted onI. Bro-
ken curves around Im(Q02Qa)50 are the
branches finally used for the construction of
semiclassical wave functions~see Fig. 6!. There
are two insets: the right-hand one enlarging a
small area indicated by a solid arrow and the left-
hand one enlarging a small area indicated by a
dotted arrow. ~b! Schematic representation of
branches which form the horizontal center line in
the left-hand inset of~a!. The center dot repre-
sents an element ofM defined in Eq. ~13!.
Hatched and nonhatched parts are mapped byf n

to the bold and thin parts in~c!, respectively.
There is a causticQ0 defined by ]qn /]Q0uP0

50 in a narrow gap between every neighboring
branches.~c! The images of the branches in~b!
by f n for n510, projected on real phase space.
Bold and thin parts almost agree with the real
domain W u and the nonrealW u, respectively
~for the real domainW u, see Fig. 1!. The parts of
images which have quite largeuImpnu ’s are omit-
ted. The creation of caustics in~b! are due to the
oscillations of the real-domainW u. ~d! The con-
figuration of chainlike structures included in the
right-hand inset of~a!. A solid square at the cen-
ter of each chainlike structure represents an ele-
ment of M. ~e! A variety of behaviors exhibited
by orbits launching fromM. Solid and broken
lines represent Req and Imq, respectively. In the
right column, the initial points of the trajectories
belong to the sixth, eighth, and tenth generations,
respectively, from top to bottom.
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step increases. We numerically confirmed that the inverse is
true, that is, any chainlike structures are created around ele-
ments ofM, as shown in Fig. 2~b!. Figure 2~c! shows that
f n(D) almost convergesW u even forn510. In this way, the
creation of chainlike structures is explained by the dynamics
of a small disk first approaching real phase space with the
guide of W s, then spreading overW u. It should be noted
that this process is not specific to our dynamics, but is the
one that the stable and unstable manifolds always have.
Hence the process can take place also in real-domain dynam-
ics and even in integrable one, whether one takes time-
domain approaches or energy-domain ones@13#.

Next we discuss the configuration of branches onI. Fig-
ure 2~d! shows the schematic representation of chainlike
structures inMn . As shown there, small chainlike structures
are arranged on both sides of the central large one, and the
same arrangement repeats around each of the small chainlike
structures. This observation means that the branches inMn
have a hierarchical configuration. Then it may be natural to
assign agenerationto each chainlike structure in the hierar-
chy. For example, in Fig. 2~d!, we can say that the first four
generations are displayed.

Since chainlike structures are created around elements of
M, these elements also have a hierarchical configuration as
shown in Fig. 2~d!, and it can be said thatM constitutes the
main frame ofMn . Generations are assigned to the elements
of M in the same way as to chainlike structures. The structure
of the orbits launched fromM is important for our semiclas-
sical analysis because of the following reasons. The first is
that these orbits describe well the behaviors of the orbits
launched from chainlike structures toward real phase space.
The second is that the study of orbits on the stable~or un-
stable! manifold is suitable for more canonical arguments
since they are compatible with the theory of dynamical sys-
tems@22#.

Figure 2~e! shows a variety of itineraries of the orbits
launched fromM. In the left column, the top row shows a
typical behavior observed inM, where both Req and Imq
oscillate in an erratic manner for some initial time steps and
eventually approach the origin. Regular itineraries such as
periodic oscillations coexist among stochastic itineraries as
shown in the middle row, where an approximately two-
periodic behavior is seen. Another type of orbit is shown in
the bottom row, where the trajectory first oscillates with pe-
riod 2 and then turns into a three-periodic motion. The close
relation between itinerating behaviors and the notion of gen-
eration can be seen clearly in the case of periodic oscilla-
tions, as shown in the right column of the figure. In each row,
the length of time for which a trajectory keeps oscillating
agrees with the generation of the initial point of the trajec-
tory.

D. Emergence of a homoclinic tangle in complex phase space

The hierarchical structure ofM is the manifestation of
chaos. To see this, two facts are shown here. The first is that
the homoclinic tangle ofW s and W u emerges in complex
phase space. The second is that the hierarchical structure of
M is created as a consequence of the emergence of the
tangle.

We study phase-space structures in terms of a coordinate
on W s defined as follows. LetF be a conjugation map from
C to W s, which satisfies the relation

~F21f F!~j!5l21j for jPC, ~14!

wherel denotes the maximal eigenvalue of the tangent map
of f at the origin@23#. Thej coordinate is normalized in the
sense thatf is represented by a linear transformation on the
coordinate. Note that a similar coordinate is defined onW u

by taking F:C→W u and replacingl21 in Eq. ~14! by l.
Hereafter we denotel21j5 f s(j).

Figure 3~a! shows a set of homoclinic points of the origin,
obtained numerically on thej coordinate. In the figure, en-
larging the neighborhood of any homoclinic point, one can
find the configuration of homoclinic points similar to the
original one with finer scale@for enlarged figures, see Fig.
4~b!#. The set of homoclinic points looks basically the same
on W u, and also one can find there the self-similarity just
described. Hence it is numerically confirmed that aho-
moclinic tangle emerges in complex phase space. The
present model tells us that null topological entropy in real
phase space does not always exclude the existence of chaos
in complex domain.

Figure 3~b! showsM plotted on the same coordinate with
different scale. Similarity to Fig. 3~a! is evident, which sug-
gests that the creation of the hierarchical configuration ofM,
as shown in Fig. 2~d!, is due to the emergence of the ho-
moclinic tangle in complex domain. The relation between the
structures ofM and of the homoclinic tangle is made more
clear by the notion of generation introduced in Sec. II C. To
see the relation, we give the precise definition of generations.
Let D be a connected domain in thej plane which satisfies
the conditions

~0,0!PD, ~15a!

f s~D !,D. ~15b!

DenotingD85D2 f s(D), the j plane is decomposed into a
family of disjoint domains as follows:

t
nPZ

f s
n~D8!5C2$~0,0!%, ~16a!

f s
m~D8!ù f s

n~D8!5f ~mÞn!. ~16b!

Thus for any pointj in this plane except (0,0), there exists a
unique integern such thatjP f s

2n(D8). Then the generation
of the point j is defined as the integern. This definition
allows us to assign generations to the homoclinic points.

Figure 3~a! shows the shape ofD. Note that under the
conditions in Eqs.~15!, the relations in Eqs.~16! hold irre-
spective of the shape. In our earlier publication@16#, D was
chosen as a disk. In the present study, another choice ofD is
proposed. We describe the shape in a specified manner in
Sec. II.

For any point in D which is sufficiently close toj
5(0,0), the forward orbit approaches the origin straightfor-
wardly at an exponential rate in the original coordinate
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(q,p). For any point in thenth generation (n>1), it takes at
leastn steps until the orbit starts to approach the origin ex-
ponentially, and thus it can exhibit a variety of behaviors
during its itinerary. That is why the oscillations shown in Fig.
2~e! are related with the generations.

The similarity between Figs. 3~a! and 3~b! suggests that
the behaviors of orbits launched fromM are similar to those
of homoclinic orbits. Actually, we numerically checked that
for any element ofM, a homoclinic point is found in the
same generation as the element, such that the orbit of the
element is well approximated by the homoclinic orbit. This is
the working principle of our symbolic description for the
elements ofM, as seen later. Therefore the hierarchical con-
figuration ofM displayed onI represents, via similarity be-
tweenM and a set of homoclinic points, the structure of the
homoclinic tangle, in other words, is a piece of evidence for
complex-domain chaos.

More generically, one can say that the hierarchical con-
figuration ofM on I is the manifestation of chaos, whether
the configuration emerges in real domain or in complex do-
main. Figure 3~c! shows an analogy of our present situation
with a horse-shoe map on a plane. In the case of this map,
IùW s and IùW u form the Cantor sets, and the fractal
structures of these intersections are originated from the

tangle ofW s andW u. ReplacingC in Eq. ~16a! by R, one
can define generations in a similar way.

Once we know that chaos exists also in the complex do-
main, the methodology studying chaos in the real domain
can be applied to the analysis on the complex domain. In
particular, symbolic dynamical description of orbits, which is
available if one finds a proper partition of phase space to
define it, is a standard technique in the theory of dynamical
systems@22#, and can be a very useful tool to analyze com-
plicated phase-space structures. Homoclinic orbits are also
describable in terms of the symbolic dynamics, so our strat-
egy to study the hierarchical configuration ofM hereafter is

FIG. 3. ~a! The set of homoclinic points,W sùW u, plotted on
W s. The center of the figure corresponds to (q,p)5(0,0), and the
points on the horizontal axis are included in real phase space. The
domainD in Eq. ~15! is enclosed by solid curves.~b! The intersec-
tion M plotted onW s. ~c! The horse-shoe map on a plane.W s and
W u for a fixed pointO creates a homoclinic tangle. A solid line
across the tangle and a bold curve onW s are analogous with ourI
andD, respectively. A dotted line is the boundary of partition which
creates binary codes. Due to the horse-shoe dynamics,W s in the
nth generation has 2n intersection points withI.

FIG. 4. ~a! Intersection between theq plane and the boundaries
of the partition. Each boundary is a three-dimensional manifold
according to Eq.~19!, so that the intersection is a set of curves. The
curves labeled bya,b,c, and d indicate the boundaries with
(x,y,n)5(1,1,1),(1,1,2),(1,1,3), and (1,21,1), respectively.~b!
Boundaries of~b1! P and~b2! f (P) plotted in the same range of the
j plane, with homoclinic points superposed. The generations of the
homoclinic points displayed are lower than or equal to 1.~b3! The
enlarged figure of the hatched part of~b2!. The boundaries off (P)
fail to divide the set of homoclinic points clearly, in the hatched part
of ~b3!. ~b4! The enlarged figure of the hatched part of~b3!. Ho-
moclinic points are aggregated densely like a thick band. The
boundary curves might touch the set of homoclinic points.
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to take the symbolic description of homoclinic orbits.

E. Symbolic description of complex orbits

We will explain the symbolic descriptions of complex ho-
moclinic orbits and semiclassical candidate orbits. For the
description of complex homoclinic orbits, we constructed
symbolic dynamics which works effectively and estimated
the imaginary parts of actions for the homoclinic orbits. The
final results of this study are presented here, and the detailed
explanation is given in Sec. III. On the basis of the results,
the symbolic description of semiclassical candidate orbits is
developed in the following way. First, the elements ofM are
encoded into symbolic sequences. We compare both configu-
rations of homoclinic points and the elements ofM, on thej
coordinate defined onW s. A clear similarity between both
configurations enables us to find, for each element ofM, a
homoclinic point located in the neighborhood of the element
of M. Since the homoclinic point is already encoded into a
symbolic sequence, we encode the element ofM into this
symbolic sequence. Next, semiclassical candidate orbits are
encoded into symbolic sequences. Since the behaviors of or-
bits launched from a single chainlike structure are described
by the orbit of an element ofM located at the center of the
chainlike structure, we assign the symbolic sequence of the
element ofM to all initial points in the chainlike structure.

Symbolic dynamics is usually constructed by finding a
generating partitionG, which is the partition of phase space
satisfying the relation

~
n52`

1`

f n~G!5e0 , ~17!

where the left-hand side~lhs! is the product of all partitions
created byf n(G), and the right-hand side~rhs! is the parti-
tion of phase space into its individual points@22# ~here we
should consider the ‘‘phase space’’ as the closure of a set of
homoclinic points of the origin!. Roughly speaking,G is the
partition of phase space such that each separated component
of phase space corresponds to a symbol, and for every bi-
infinite sequence of symbols there may at most exist one
trajectory of the original map. In our case, a partition of
complex phase space is defined in terms of the phase part of
V8(q) which appears in the form

V8~q!522gk exp@2A~q!2 iB~q!#, ~18!

where A(q),B(q)PR. The boundaries of the partition are
defined by

$~q,p!PC2uB~q!5@2nxy2~3x11!y/2#p%, ~19!

where (x,y,n) is an element of the set

T5$~x,y,n!u~x,y!P$11,21%,nPN%. ~20!

The intersection between theq plane and the boundaries of
the partition are shown in Fig. 4~a!. x and y in Eq. ~19!
represent the signs of Req and Imq of the points on a
boundary respectively, i.e., the pair ofx and y specifies the
quadrant of theq plane where theq component of the bound-

ary is included.n is the squared ‘‘distance’’ between the
boundary and the origin, in the sense that the axis Req
5Im q on the q plane intersects the boundary atq
'(xAnp/g,yAnp/g) for n@1.

Then our partition, denoted byP, is defined as a set of
phase-space components as follows:

P5$U~x,y,n!u~x,y,n!PS%, ~21a!

S5Tø$~0,0,0!%, ~21b!

whereU(x,y,n) for (x,y,n)PT, whoseq component is dis-
played in Fig. 4~a!, denotes the region enclosed by two
boundaries associated with (x,y,n) and (x,y,n11), and
U(0,0,0) denotes the complement of the union of all phase-
space components encoded to the elements ofT. The origin,
(q,p)5(0,0), is included inU(0,0,0).

Figure 4~b! shows thej plane divided byf n(P) for n
50 and 1. The central domain in Fig. 4~b1! is the domainD,
which was introduced in Sec. II D. The domainD is defined
on the j plane as a connected domain ofU(0,0,0)ùW s

which includesj50. If f n(P) for any n>0 divides clearly
the set of homoclinic points displayed here, thenP is the
generating partition, i.e., relation~17! holds forP @it is suf-
ficient to consider the case ofn>0 since any homoclinic
point is mapped to the region displayed in Fig. 4~b1! by the
iterations off ].

On one hand,f n(P) for n50 divides a set of homoclinic
points clearly as shown in Fig. 4~b1!. This means that our
partition is a reasonable approximation of the generating par-
tition. So by means ofP, we can construct a symbolic dy-
namics which works effectively. On the other hand, there are
some regions in thej plane wheref n(P) for n>1 fails to
divide the set of homoclinic points clearly. In such regions, it
may be necessary to improve our partition to obtain the gen-
erating partition, and it is our future problem. Note that our
complex dynamics is not proved to be hyperbolic, and that
the existence of the generating partition for nonhyperbolic
systems is an open problem. The improvement of the parti-
tion is of mathematical interest, however, as actually demon-
strated below, the present definition ofP is sufficient for our
semiclassical analysis.

In terms ofP, each homoclinic point is encoded into a
bi-infinite symbolic sequence of the form

. . . OOa2na2(n21) . . . a21 .a0a1 . . . anOO . . . ,
~22!

where O5(0,0,0), nPN, and akPS(uku<n). The symbol
ak represents that the image of the homoclinic point byf k is
included in a phase-space componentU(ak) defined in Eqs.
~21!. The finite sequence ofak’s is accompanied with semi-
infinite sequences ofO’s on both sides. It reflects that any
homoclinic point approaches the origin of phase space by
forward and backward iterations off. In particular, ho-
moclinic points included inD are encoded into symbolic
sequences of the form

. . . OOa2na2(n21) . . . a21 .OO . . . , ~23!
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wherenPN andakPS(0,k<n). Any symbol on the rhs of
the decimal point isO, since the forward orbits are always
included in a componentU(O) due to Eq.~15b!.

For a homoclinic pointw, which has a symbolic sequence
of form ~22!, let us consider the imaginary part of action of
the form

s~w!5 (
k51

1`

Im@T„pk21~w!…2V„qk~w!…#, ~24!

where „qk(w),pk(w)… stands for f k(w). When we denote
ak5(xk ,yk ,nk) for kPZ, s(w) is estimated by

p

g (
k51

1`

~xknk
1/22xk21nk21

1/2 !~yknk
1/22yk21nk21

1/2 !, ~25!

whereg is a parameter ofV(q). The derivation of formula
~25! is presented in Sec. III.

From these results, we discuss the symbolic description of
semiclassical candidate orbits. LetMn be a subset ofM
whose members belong to generations lower thann. Then we
observe numerically the following two facts: first, the clear
similarity between Figs. 3~a! and 3~b! enables us to find, for
any element ofMn and in its neighborhood on thej plane, a
homoclinic point which has a symbolic sequence of the form

. . . OO.a0a1 . . . an23OO . . . ~an23ÞO!. ~26!

For n52, Mn has only a single element, and a homoclinic
point which has . . .OO.O . . . OO . . . corresponds to the
element. Forn51, Mn is a null set. Second, on the planeI,
the elements ofMn are located at the centers of chainlike
structures inMn @see Fig. 2~d!#.

From the first fact, to each point ofMn , we assign a
semi-infinite symbolic sequence of the form

a0a1 . . . an23OO . . . . ~27!

Figure 5 shows some trajectories launched fromM and sym-
bolic sequences of form~27! assigned to the initial points of
the trajectories. The signs and amplitudes of theq compo-
nents at each time step are well described by (x,y)’s andn ’s
of the corresponding symbols. This means that the behaviors
of forward orbits launched fromM are well approximated by
those of homoclinic orbits.

From the second fact, to each chainlike structure in
Mn(,I), we assign the same symbolic sequence as the el-
ement ofMn(,W s) located at the center of the chainlike
structure. This assignment is reasonable since, as stated in
Sec. II C, the motions of orbits launched from the chainlike
structure are well approximated, till they start to spread over
W u, by the motion of an orbit launched from the element of
M. Then chainlike structures inMn are also described by
symbolic sequences of form~27!.

For any trajectory launched from a single chainlike struc-
ture inMn , we approximate the imaginary part of action as
that of the trajectory launching from the element ofMn lo-
cated at the center of the chainlike structure. Hence, by using
Eqs.~25!–~27!, the estimation of the imaginary parts of ac-

tions for semiclassical candidate orbits is attributed to the
estimation of those for homoclinic orbits. There are branches
not included in any chainlike structure, and no symbolic se-
quence is assigned to them. However, semiclassical contri-
butions from them are negligible. This issue is discussed in
the following Sec. II F.

F. Reproduction of tunneling wave functions

Semiclassical wave functions are constructed from sig-
nificant complex orbits selected according to the amounts of
imaginary parts of actions. The semiclassical mechanism of
the tunneling processes is explained by the structure of com-
plex phase space.

The sum in Eq.~12! is evaluated in three steps: First,
branches not included in chainlike structures are removed
from Mn ; second, elements ofMn(,M ) are put in order
according to the amounts of imaginary parts of actions esti-
mated by Eq.~25!; and finally, the sum is evaluated for the
initial points in chainlike structures associated with the ele-
ments ofMn for which the above estimations are small.

The first step is necessary due to the following reason. For
orbits launched fromMn but not from chainlike structures,
there is no orbit launched fromM which guides them to real
phase space withinn time steps. This means that these orbits
have large imaginary parts of momenta at the time stepn, so
that they gain sufficiently large amounts of imaginary parts
of actions. If the imaginary parts of actions are positively
large, the contributions from the orbits are small enough to
be negligible, or if they are negatively large the contributions
from the orbits are unphysical due to the Stokes phenomenon
@24#, so that the orbits should be excluded from the whole
candidates.

In the second step, some elements are removed fromMn
also due to the Stokes phenomenon. Following the prescrip-
tion given in Ref.@25#, we found that chainlike structures

FIG. 5. The trajectories launched fromM, and symbolic se-
quences assigned to their initial points~elements of each column
vector arex,y, and n from top to bottom!. A semi-infinite part,
OOO . . . , is omitted in each sequence. Solid and broken lines
represent Req and Imq, respectively. The trajectories show~a!
erratic motions,~b! approximately two-periodic motions, and~c!
monotonical approach to real phase space.
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which have unphysical contributions to wave functions, in-
cluding the case of exponentially large semiclassical ampli-
tudes, are associated with the elements ofMn whose sym-
bolic sequences include symbols of the form (1,21,n) or
(21,1,n) with nPN. The justification is our future problem.
See the Discussion in Sec. IV.

After removing such elements fromMn , we have the or-
dering for elements ofMn :

w0 w1 w2 . . . , ~28!

such that the inequalities hold:

0<s~w0!<s~w1!<s~w2!<•••, ~29!

wheres(wk) for k>0 represents the imaginary part of action
estimated by Eq.~25! for the forward trajectory ofwk .

From Appendix B, it is seen thatw0, which is primarily
significant in Mn for wave functions, has the symbolic se-
quence

OOO . . . , ~30!

and the members of$w1 ,w2 , . . . ,w2(n22)%, which are sec-
ondarily significant inMn , have symbolic sequences of the
form

bbb . . . bbOOO. . . , ~31!

where bP$(1,1,1),(21,21,1)%, and the length of
bbb . . . bb ranges from 1 ton22. Due to form~27!, the
length is bounded above byn22, and the member of
$w1 ,w2 , . . . ,w2(n22)% which hasbbb . . . bb of length k
22(k<n) belongs to thekth generation. Formula~25! tells
us thats(w1)5s(w2)5•••5s(w2(n22)).

We observed that the orbits ofw0 ,w1 , . . . ,w2(n22) be-
have as follows. The orbit ofw0 converges to the origin
exponentially, so that it gains the smallest imaginary part of
action. The orbits ofw1 ,w2 , . . . ,w2(n22) first explore the
vicinity of real phase space till the sequencebbb . . . bb ter-
minates and then converge to the origin exponentially. Such
motions yield much smaller imaginary parts of actions than
flipping motions in complex domain, which are observed for
generic trajectories launched fromM. The motions of ho-
moclinic orbits whose symbolic sequences include subse-
quences of form~31! are investigated in Sec. III. There it is
found that such homoclinic orbits explore the vicinity of real
phase space. The motions of the orbits of
w1 ,w2 , . . . ,w2(n22) reflect those of homoclinic orbits.

Figure 6~a! shows quantum and semiclassical wave func-
tions for n510, the latter of which is constructed by taking
account of the contributions from chainlike structures asso-
ciated withw0 ,w1 , . . . ,w2(n22) . Both functions are in ex-
cellent agreement. The contributions from the other chainlike
structures are much smaller than those taken account of here.
Their squared amplitudes are of the order of;10250 at most.
In particular, the contributions from trajectories which ex-
hibit flipping or oscillatory motions are negligible, as shown
in Fig. 6~c!.

It is remarkable that only a small number of branches are
significant to describe the tunneling processes@the significant
branches are represented by broken curves in Fig. 2~a!#.
More precisely, the numbers of branches that we need in-
creases algebraically with time stepn, while the total number
of chainlike structures and that of branches inMn increase
exponentially withn. The algebraic increase of significant
orbits results from linear increases of significant chainlike
structures and of branches included in individual chainlike
structures. The former linear increase is due to the symbolic
form ~31!. The latter is due to the oscillating structure of real
domainW u by which the number of folding points of any
manifold initially put in real domain increases at most lin-
early with time step. In other words, the algebraic increase is
a consequence of the absence of real-domain chaos. When
the real domain is chaotic, a small piece of a complex-
domain manifold is, after it approached the real domain by
the iterations of the map, stretched and folded by real-
domain chaotic dynamics without gaining additional imagi-
nary part of action, so that the number of significant orbits
can increase exponentially with time@5,18#. It should be
noted that in the integrable limit of our model, there is no
increase in the number of branches with time. Hence in our
case, the algebraic increase is the reflection of nonintegrabil-
ity.

The excellent agreement between both quantum and semi-
classical calculations enables us to interpret semiclassically
the features of tunneling wave functions. Figure 6~b! clearly
shows that the contributions from many chainlike structures
reproduce the crossovers of amplitudes in reflected and trans-
mitted regions. We found that erratic oscillations on each
semiclassical component are due to the interferences be-
tween branches included in a single chainlike structure.
Since the length ofbbb . . . bb decides the generations of
w1 ,w2 , . . . ,w2(n22) , it can be said that the crossovers of
amplitudes are created by the interferences between chain-
like structures belonging to different generations. In this way,
the complicated tunneling amplitudes are explained semi-
classically by the creations of chainlike structures on the
plane I and by the exponential increase of the number of
chainlike structures with time~though linear increase for sig-
nificant ones!, which is due to the emergence of a complex
homoclinic tangle.

The semiclassical mechanism of the tunneling processes
in our model is summarized as follows. Stable and unstable
manifolds of a real-domain unstable fixed point create a
tangle in complex domain. The initial manifold representing
a quantum initial state is located through the tangle, so that
the intersection points between the initial manifold and the
stable manifold form a hierarchical structure on the initial
manifold. The orbits launched from the neighborhood of
each intersection point are guided to real phase space by the
stable manifold and then spread over the unstable manifold.
The number of the orbits guided to real phase space increases
exponentially with time~though significant ones increase al-
gebraically!, reflecting the hierarchical structure formed by
the intersection points on the initial manifold. Then the in-
terferences between these orbits create complicated patterns
in the tunneling amplitudes.
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III. SYMBOLIC DESCRIPTION OF A COMPLEX
HOMOCLINIC TANGLE

A. Construction of partition of phase space

Here we construct a partition of complex phase space
which encodes homoclinic points of the origin into symbolic
sequences and defines symbolic dynamics which works ef-
fectively. The behaviors of homoclinic orbits and the evalu-
ation of imaginary parts of actions for the orbits are pre-
sented in Secs. III B and III C, respectively.

There have been extensive studies on the construction of
generating partition in real phase space@26# even in nonhy-
perbolic regimes@27#. In such real-domain studies, the
boundaries of generating partition are roughly approximated
by a set of folding points of flat manifolds, created by single-
step iterations of maps. However, the extension of such
working principle to complex phase space is not obvious.

In order to find the generating partition for our mapf, we
consider the single-step dynamics off 21 for flat manifolds
of the form $(q,p)PC2up5p0% with p0PC. We found that
the dynamics is well understood by relating it to the expo-
nent A(q)1 iB(q) of V8(q), where A(q)5g@(Req)2

2(Im q)2#2 lnuqu and B(q)52g(Req)(Im q)2argq @the
notation is the same as in Eq.~18!#. The contour curves of
both functions are shown in Figs. 7~a! and 7~b!.

First, the single-step dynamics off 21 is considered far
from the origin, (q,p)5(0,0), and then is considered around
the origin. Far from the origin,A(q) andB(q) are controlled
linearly by variablesu andv:

~u,v !5„@~Req!22~ Im q!2#/2,~Req!~ Im q!…. ~32!

On this coordinate, one obtains the estimations

A~q!52gu1O~ lnuuu! ~v:fixed,uuu→`!, ~33a!

B~q!52gv1O~ lnuvu! ~u:fixed,uvu→`!, ~33b!

or 2gv1O~ uuu21! ~v:fixed,uuu→`!, ~33c!

whereg is a parameter inV(q).
In a region of phase space whereuuu@1, the dynamics of

f 21 is discussed as follows. Whenu@1, V8(q) almost van-
ishes due to Eq.~33a!, so that the behavior of any orbit in the
region is of a free motion, as shown in Fig. 7~c! ~the dynam-
ics of f is shown there, and that off 21 is basically the same!.
When u!21, a small rectangle on the (u,v) coordinate,
centered at (u,v) with sides of lengthsDu and Dv, is
mapped by the functionV8(q) approximately to an annulus
on the q plane „with radii 2gk exp(22gu) and
2gk exp@22g(u1Du)#…. Hence when we put a rectangle with
Dv5np/g on a flat manifold withp5p0, since thisDv is
approximatelyn periods of the phaseB(q), the image of the
rectangle byf 21 looks like ann-fold annulus when projected
on the q plane. In order to distinguish each branch of the
n-fold annulus, we propose the boundaries of the partition far
from the origin as the form$(q,p)PC2uv5v01np/g%, with
v0 andn being a fixed real number and an arbitrary integer,
respectively.

FIG. 6. ~a! Quantum and semiclassical wave functions forn
510, represented by dotted and solid curves, respectively. The
solid one is shifted by 104 to distinguish both functions.~b! Indi-
vidual contributions from chainlike structures to the semiclassical
wave function shown in~a!. The crossovers of amplitudes far from
the origin and near the origin are mainly reproduced by the compo-
nents displayed in~b1! and ~b2!, respectively. For some compo-
nents, symbolic sequences assigned to chainlike structures are pre-
sented, whereb5(21,21,1). Each of the components 1–5 is
dominated by a single-orbit contribution atq50, whose imaginary
part of action is 26.9, 17.9, 14.3, 15.9, and 22.7, respectively.~c!
Squared amplitudes of the semiclassical components~lhs! which
come from chainlike structures associated with the elements ofM
whose trajectories exhibit oscillatory motions~rhs!. Solid and bro-
ken lines on the rhs represent Req and Imq, respectively. Flipping
or oscillatory motions in complex phase space gain large amounts
of imaginary parts of actions due to large complex momenta.
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Around the origin, we estimate the locations of the bound-
aries by considering a set of real-domain folding points of
the flat manifolds, created byf 21. For a flat manifold with
p5p0PR, we define a folding point on the manifold (q,p0)
by the conditiondp21(q)/dq50, wherep21 is thep com-
ponent off 21(q,p0). For p0 ranging from2` to 1`, a set
of folding points is obtained as two lines,$(q,p)PR2uq
561/A2g%. Hence the boundaries of the partition in com-
plex domain are expected to intersect the real domain around
these lines.

We propose a partition of phase space which satisfies the
rough estimations presented above both in complex and real
domains. To this end, we use the notations

U~x,y!5$~q,p!PC2ux Req.0, y Im q.0%, ~34a!

b~x,y,n!5@2nxy2~3x11!y/2#p, ~34b!

where (x,y,n) is an element ofT defined in Eq.~20!. U(x,y)
covers a single quadrant of theq plane andb(x,y,n) always
takes an integer timesp. For (x,y,n)PT, a phase-space
componentU(x,y,n) is defined by

U~x,y,n!5$~q,p!u~q,p!PU~x,y!,

@B~q!2b~x,y,n!#@B~q!2b~x,y,n11!#<0% ~35!

and, for (x,y,n)5(0,0,0), by

U~x,y,n!5C22 ø
(x8,y8,n8)PT

U~x8,y8,n8!. ~36!

Then our partitionP is defined as a set of the above
phase-space components@see Eq.~19! for the definition of
boundaries#. Such definition of partition satisfies our rough
estimation for the locations of the boundaries. In fact, in the
complex domain far from the origin, due to Eqs.~33!, the
relation B(q)5b(x,y,n) leads tov'v01np/g when we
set v052(3x11)yp/4g and n5nxy. Moreover, Fig. 7~b!
shows that the boundaries ofP indicated by B(q)
5b(x,y,n) for x,yP$11,21% and n51 intersect the real
phase space atq561/A2g.

B. Properties of homoclinic orbits

By the partition constructed above, homoclinic points are
encoded into symbolic sequences of form~22!. In order to
estimate imaginary parts of actions, it is necessary to under-
stand typical behaviors exhibited by the homoclinic orbits.
Here we present such typical behaviors as two observations
obtained from numerical computations. The first observation
is concerned with the relation betweenn, which is a member
of the symbol (x,y,n), and the flipping amplitude of the
corresponding trajectory. The other one is concerned with the
relation between the length of a consecutive part
bb . . . b(bPS) in a symbolic sequence and the behavior of
the corresponding trajectory. These are numerical observa-
tions and we have no mathematical proof, but the phase-
space itinerary of any homoclinic orbit can be well explained
by the combinations of the behaviors presented in these ob-
servations.

FIG. 7. Contour curves of the functions~a! A(q) and~b! B(q).
Each curve is given, in~a!, by A(q)5@11 ln(2g)#/210.4n for n
PZ and, in ~b!, by B(q)5pn/6 for nPZ with a branch2p
<argq,p. Far fromq50, these curves are approximated by hy-
perbolic curves. In~b!, a bold part in the side of Req.0 corre-
sponds to the case ofB(q)50, and that in the other side corre-
sponds to the cases ofB(q)52p(Im q.0) andp(Im q<0). In
these bold parts, the real axis and the others intersect atq5

61/A2g. ~c! Successive images of small pieces of a flat manifold,
$(q,p)PC2up5p0% with p05100.01 i50.0, by the mapf. Contour
curves of theu component of the (u,v) coordinate are superposed.
For one of the pieces,m1, its images are always in a region where
u@1, so that their behavior is of a free motion. For the other one,
m2, its images expand over a wide range of phase space~a hatched
region!, as soon as they enter a region whereu!1.
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Before presenting the observations, we estimate the loca-
tions of homoclinic points in phase space by considering
single-step folding processes of flat manifolds. Letmi and
mf be complex planes defined byp5pi and p5pf
(pi ,pfPC), respectively. The intersectionf (mi)ùmf
is given by $(q,pf)PC2uA(q)52 lnucu,B(q)52argc
62np,n50,1,2, . . . %, whereA(q) and B(q) are the func-
tions appearing in Eqs.~33!, andc5(pf2pi)/(2gk). Since
the q components of the intersection points are located on a
contour curve ofA(q), they are located along the axes
Req56Im q asymptotically asn→1`. Also, as will be
seen, theq components of homoclinic points are located
along these axes asymptotically asn→1`, where n is a
member of the symbol (x,y,n).

Observation 1.Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points whose symbolic sequences take the forms

. . . a22 a21 .b1 a1 a2 . . . for w1 ,

. . . a22 a21 . b2 a1 a2 . . . for w2 ,

. . . a22 a21 . b3 a1 a2 . . . for w3 ,

A ~37!

whereak for kÞ0 is a member ofS defined in Eq.~21!, and
bn for nPN is given by (x,y,n), with x and y being fixed
members of$11,21%. Then the following relations hold:

lim
n→1`

Ag/~np! q0~wn!5~x,y!, ~38a!

lim
n→1`

Ag/~np!p0~wn!52~x,y!, ~38b!

lim
n→1`

Ag/~np!p21~wn!5~x,y!, ~38c!

where (q0 ,p0) is the current location ofwn in phase space
and p21 is the momentum at the last time step. The rhs of
each equation denotes a pair of signs of real and imaginary
parts.

Figure 8 shows the trajectories ofwn’s for small n ’s. In
the figure, one can see two facts: First, the signs of
Req0(wn) and Imq0(wn) are described, respectively, byx
and y in the symbol bn and second, the amplitudes of
Req0(wn) and Imq0(wn) increase withn much faster than
the amplitudes at the other time steps. Due to the second fact,
the following approximations hold for largen ’s:

p05q12q0'2q0 , ~39a!

p215q02q21'q0 , ~39b!

so that the sign of Rep0(wn) @ Im p0(wn)# is opposite to that
of Rep21(wn) @ Im p21(wn)# for large n ’s. Figures 9~a!–
9~c!, showq0(wn), p0(wn), and p21(wn) for much larger
n ’s. The magnitudes of the real and imaginary parts of these
quantities are shown to have the dependence of the form
Anp/g for sufficiently largen ’s. In Fig. 9~d!, it is shown that
q0(wj ) diverges much faster thanq21(wj ) and q22(wj ).

Similarly, q0(wj ) diverges much faster thanqk(wj ) for any
otherkÞ0, though not displayed here.

Relation~38a! leads to

lim
n→1`

uReq0~wn!/Im q0~wn!u51. ~40!

In the following, we explain that the relations in Eq.~38!
follow, assuming that relation~40! holds for the homoclinic
points given by Eqs.~37!, and thatq0(wn) diverges much
faster thanqk(wn) for any kÞ0 asn→1`.

Relation ~38a! is explained as follows. Sincebn

5(x,y,n), wn is included in a phase space component
U(x,y,n) defined in Eq.~35!. Then thev component of
q0(wn) in the (u,v) coordinate~32! diverges asn→1`,
sinceB„q0(wn)… diverges asn→1` due to Eq.~19!, and
v'B(q0(wn))/(2g)'2nxyp/(2g) for largen ’s due to Eqs.
~33! and ~19!. Therefore from Eq.~40! and the relation
(Req0)(Im q0)5v'nxyp/g, we obtain q0(wn)
'Anp/g (x,y) for largen ’s.

Relation~38c! is explained as follows. The classical equa-
tions of motions in Eq.~2! lead to the relation

FIG. 8. The trajectories of homoclinic pointswn’s for n
51,2, . . . ,5. Theleft and right columns display the real and imagi-
nary parts of the trajectories, respectively. Axes in~a!–~d! have the
same scale. The symbolic sequences ofwn’s take the form
. . . O O (21,1,1).bn(1,1,2)O O O . . . , wherebn’s are given by
~a! (1,1,n), ~b! (21,1,n), ~c! (21,21,n), and ~d! (1,21,n). The
dotted lines represent the case thatbn5O.
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q0~wn!1q22~wn!52q21~wn!2V8„q21~wn!…. ~41!

Since q0(wn) diverges much faster thanq22(wn) as n→
1` due to our assumption, the rhs of the above relation
diverges in this limit. It means thatq21(wn) also diverges as
n→1`, since the rhs of the relation is an entire function of
q21. In particular, theu component ofq21(wn) diverges as
n→1`, since „q21(wn),p21(wn)… is always included in
the phase-space componentU(a21) irrespective of n.
Furthermore, the u component diverges to 2`,

since if it diverges to 1` with „q21(wn),p21(wn)…
being in U(a21), then Imq21(wn) and V8„q21(wn)…
vanish, so that Im@q0(wn)1q22(wn)#5Im@2q21(wn)
2V8(q21(wn))#→0. However, this contradicts that as
n→1`, uIm@q0(wn)1q22(wn)#u'uIm q0(wn)u'Anp/g
→1`. Thus theu component ofq21(wn) diverges to2`
asn→1`. When theu component ofq21(wn) is negatively
large,V8„q21(wn)… is exponentially larger thanq21(wn), so
that q0(wn)'2V8„q21(wn)…. This relation means that
uq21u'Ag21lnuq0u, and thusp21(wn) has the same depen-
dence asq0(wn) on n due to the relationp215q02q21.

FIG. 9. The dependences of~a! q0(wn), ~b! p0(wn), ~c! p21(wn), and~d! uqk21(wn)/qk(wn)u for k50,21, on the subscript numbern.
Axes in ~a!–~c! have the same scale. The symbolic sequences ofwn’s are given in~a!, whereAn ,Bn , andCn denote (1,1,n),(21,1,n), and
(21,21,n) respectively. The dotted lines in~a!–~c! representAnp/g. In ~a!, all curves almost coincide.
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Relation~38b! is explained in a similar way by considering
relationsp05q12q0 and Eq.~41! for q0 ,q1, andq2.

We proceed to the next observation. In usual symbolic
dynamics, a consecutive partb b . . . b in a symbolic se-
quence always corresponds to a fixed point in phase space or
the motion approaching the fixed point. However, our clas-
sical dynamics always has only a single fixed point at the
origin for any choice of positive parametersk andg, which
is easily checked by solvingf (q,p)5(q,p), so that the
phase-space motion corresponding to a consecutive part
b b . . . b with bÞO is not obvious. Our second observation
says that the phase-space motion corresponding to the above
consecutive part has a turning point. It is conjectured that as
the length ofb b . . . b increases, the location of the turning
point diverges, so that the trajectory corresponding to
b b . . . b does not approach to any point in phase space in
the limit of the length.

Observation 2. Let $ w1 ,w2 ,w3 . . . % be a set of ho-
moclinic points whose symbolic sequences take the forms

. . . a22 a21 . b b a0 a1 a2 . . . , forw1 ,

. . . a22 a21 . b b b b a0 a1 a2 . . . forw2 ,

. . . a22 a21 . b b b b b b a0 a1 a2 . . . forw3 ,

A ~42!

where bÞO and the length ofb b . . . b for wj is 2j ( j
PN). Then the trajectory ofwj corresponding to the con-
secutive partb b . . . b is included in a phase-space compo-
nentU(b) and the momentum almost vanishes at time step
j 21. Moreover, the following inequalities hold:

0,Reqk21~wj !/Reqk~wj !,1 ~0,k, j !, ~43a!

0,Im qk~wj !/Im qk21~wj !,1 ~0,k, j !, ~43b!

0,Reqk~wj !/Reqk21~wj !,1 ~ j ,k,2 j !, ~43c!

0,Im qk21~wj !/Im qk~wj !,1 ~ j ,k,2 j !. ~43d!

This observation is exemplified in Fig. 10. In the case
where the length ofb b . . . b in sequences~42! is given by
2 j 11 for wj , Eqs.~43a! and ~43b! hold in the range of 0
,k< j , and Eqs.~43c! and ~43d! hold in the range ofj ,k
<2 j . In this case, the momentumpk(wj ) at k5 j is quite
small, but does not vanish.

We conjecture that theq component of the turning point
qj (wj ) diverges with the length ofb b . . . b, i.e., the follow-
ing relation holds:

lim
j→1`

qj~wj !5~x`,0!, ~44!

wherex has the sign of the infinity, which is given by the
member of the symbolb5(x,y,n). This conjecture is based
on the following observation.

Figure 10~c! shows that asj increases,V„qj (wj )… is ap-
proximated byaeiu j 2b where u, a, and b(.0) are real

numbers depending onb. If this approximation holds, solv-
ing V„qj (wj )…5aeiu j 2b, one obtains a solution

„uj~wj !,v j~wj !…5~2g!21
„b ln j 2 ln~a/k!,2u…, ~45!

where„uj (wj ),v j (wj )… is the location ofqj (wj ) on the (u,v)
coordinate. This solution suggests that Reqj (wj ) diverges
and Imqj (wj ) vanishes asj→1`. Moreover, according to
Observation 2,qj (wj ) and theq component ofU(b) are
included in the same quadrant of theq plane. Therefore re-
lation ~44! is obtained. The justification of this relation needs
further investigation of classical dynamics, and we hope to
report the result of this issue elsewhere.

We have shown that there are two types of behaviors ex-
hibited by homoclinic orbits. In our numerical computations,
the behavior of any homoclinic orbit can be understood by
the combinations of only two types of motions, one of which
is the flipping motions almost along the axes Req
56Im q, and the other of which is the motions almost along
the contour curves of thev component in the (u,v) coordi-
nate. Which type of motion occurs in the process from
(qk ,pk) to (qk11 ,pk11) along a single homoclinic trajectory
depends on whether the neighboring symbols in a symbolic
sequence,ak andak11, are different~the former type! or the
same~the latter type!. The former type of motion is charac-
terized by Observation 1, and the latter one by Observation
2.

C. Evaluation of imaginary parts of actions

The imaginary parts of actions for homoclinic orbits are
evaluated from symbolic sequences. We first consider the
homoclinic points appearing in Observations 1 and 2, and the
estimations of imaginary parts of actions for these cases are
presented as Observations 3 and 4, respectively. Then using
the latter two observations, we estimate the imaginary part of
action for any homoclinic orbit. Observation 3 says that the
imaginary part of action diverges linearly asn→1`, where
n is a member of the symbol (x,y,n). Observation 4 says
that the amount of the imaginary part of action is bounded
even if the length of a consecutive partb b . . . b (bPS) in a
symbolic sequence tends to infinity. In particular, we ob-
served that phase-space itineraries described byb b . . . b
gain little imaginary parts of actions compared to the other
itineraries. This means that the homoclinic orbits appearing
in Observation 4 can play a semiclassically significant role.
Observations 3 and 4 are also entirely based on our numeri-
cal computations and, so far, we have no mathematical proof
for these observations.

For any homoclinic pointw, we considers(w) defined in
Eq. ~24! as the imaginary part of action for the orbit ofw.
The sum in the rhs of~24! is the long time limit of Im (Sn
2L0) @for the definitions ofSn and L0, see Eq.~8!# and
converges due to the exponential convergence of the orbit to
the origin. In the definition ofs(w), we only take account of
the contributions from the forward trajectories, since semi-
classical wave functions in our time-domain approach are
determined by them. We do not consider the termL0, since it
depends only on the choice of an incident wave packet, not
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on classical dynamics. First, we estimates(w) for the ho-
moclinic points appearing in Observation 1.

Observation 3. Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points which appears in Observation 1. Then for
any integern>1, the following relation holds:

lim
n→1`

@g/~2np!#s„f 2n~wn!…5xy. ~46!

Figure 11~a! shows the dependence ofus„f 2n(wn)…u on n. It
can be seen thatus„f 2n(wn)…u'2np/g for large n ’s. The
condition n>1 is necessary, since it is essential to relation
~46! to take account of the contributions from the flipping
motions fromq21(wn) to q0(wn) displayed in Fig. 8.

In the following, we explain relation~46!, assuming that
Observation 1 holds, and that for the homoclinic points ap-
pearing in Observation 1,qk(wn) @q2k(wn)# for k>0 di-
verges much faster thanqk11(wn) @q2(k11)(wn)# as n→
1`. Figure 9~d! suggests that the second assumption is
valid for k50 and 1. For the otherk’s, it has not been found
numerically whether the assumption is valid or not, since
qk(wn) andq2k(wn) for k>2 remain to be immediate val-
ues even forn'1000, so that the numerical computation
needs too high accuracy to make clear the asymptotic behav-
iors of uq6k(wn)u with sufficiently large magnitudes.
However, the exponential dependence ofV8(q) on u andv
shown in Eqs. ~33! means that the large difference in
qk(wj )@q2k(wj )# results from the slight difference in

qk11(wj )@q2(k11)(wj )# by the mapf 21 ( f ), so that the as-
sumption fork>2 is expected to be valid.

We first discuss the kinetic part and then the potential part
of s„f 2n(wn)…, respectively. In the kinetic part,
Sk52n11

1` Im T„pk21(wn)…, each term is written as

Im T~pk21~wn!!5@Repk21~wn!#@ Im pk21~wn!#. ~47!

Due to the assumptions we put, the following inequalities
hold for kÞ0,21 and for largen ’s:

uRepk~wn!u!uRep21~wn!u,uRep0~wn!u, ~48a!

uIm pk~wn!u!uIm p21~wn!u,uIm p0~wn!u. ~48b!

Then the kinetic part ofs„f 2n(wn)… is dominated by the
terms ImT„p21(wn)… and ImT„p0(wn)… due to Eq.~47!.
Since Observation 1 says that the quantities in the rhs of the
above inequalities are proportional ton1/2 for large n ’s,
Im T„p21(wn)… and ImT„p0(wn)… have linear dependences
on largen ’s. Hence the kinetic part ofs„f 2n(wn)… is ex-
pected to have a linear dependence on largen ’s. Figure 11
shows that the kinetic part ofs„f 2n(wn)… is actually domi-
nated by ImT„p21(wn)… and ImT„p0(wn)…, and has a linear
dependence on largen ’s.

In the potential part of s„f 2n(wn)…, i.e.,
Sk52n11

1` Im V„qk(wn)…, each term is written as

FIG. 10. ~a! Trajectories ofwj ’s for j 55,10,15 and~b! for j 5100. ~c! V(qj (wj )) for j ranging from 1 to 100. The symbolic sequences
of wj ’s in ~a!–~c! take the form . . .O O . b b . . . b O O . . . , where the length ofb b . . . b is 2j . The types ofb used in~a! and in the
others are given, respectively, in~a2! and in~b!. In ~a!, amplitudes of Rep and Imp almost vanish at time stepj 21. In ~b!, bold curves are
the boundaries of our partition. For the discussion in Sec. III C, trajectories for an integrable limit are superposed~dotted curves!, which have
null energy and connect two infinities of theq plane (Req,Im q)5(1`,0) and (0,1`). The dotted line sprouting from the origin represents
an axis Req5Im q. In ~c!, the phase22g(Reqj )(Im qj ) is plotted without taking mod 2p.
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Im V~qk~wn!!5ImFqk11~wn!22qk~wn!1qk21~wn!

2gqk~wn! G
~49!

by incorporating a relationpk5pk212V8(qk) given by Eq.

~2! and a relationV8(q)522gqV(q) satisfied by ourV(q).
Simple arithmetic of the rhs of Eq.~49! yields the inequality

uIm V~qk~wn!!u<
uqk11~wn!u1uqk21~wn!u

2guqk~wn!u
. ~50!

Based on the assumptions imposed here, we can develop
the same argument as that just below Eq.~41! ~note that the
assumptions here are stronger than those imposed there!. As
a result, one obtains that uq1(wn)u,uq21(wn)u
'Ag21lnuq0(wn)u for largen ’s. In a similar way, one obtains
that uq6(k11)(wn)u'Ag21lnuq6k(wn)u for k>1 and largen ’s.
By using these relations, the rhs of Eq.~50! is approximated
by

@2g2g~ uqk~wn!u!#21 for k50, ~51a!

g„uqk21~wn!u… for k.0, ~51b!

g~ uqk11~wn!u! for k,0, ~51c!

whereg(x)5x/(2Ag ln x). Here we used an approximation
uqu1Ag21lnuqu'uqu for large uqu.

Sinceuq0(wn)u'A2np/g for largen ’s according to Ob-
servation 1, the rhs of Eq.~50! is approximated by

@2g2g~A2np/g!#21 for k50, ~52a!

g~A2np/g! for k561, ~52b!

g„Aln8$ ln8@ . . . ln8~2pn/g! . . . #%… for uku>2,
~52c!

where ln8x5(2g)21ln x, and the argument of the square root
in Eq. ~52c! is a uku21 fold logarithm of 2pn/g.

Since g(x) in Eq. ~52! is monotonically increasing for
largex, one can expect that the potential part ofs„f 2n(wn)…
for largen ’s is dominated by the terms ImV„q21(wn)… and
Im V„q1(wn)…. More precisely, from Eq.~52b!, the potential
part of s„f 2n(wn)… is expected to be approximated by
2g(A2np/g) for large n ’s. Also, from Eq. ~52a!,
Im V„q0(wn)… is expected to vanish asn→1`. Figure 11
shows that the potential part ofs„f 2n(wn)… is actually domi-
nated by the terms ImV„q21(wn)… and ImV„q1(wn)… for
large n ’s, and the asymptotic behavior of the potential part
for largen ’s is described by 2g(A2np/g). It is also shown
that ImV„q0(wn)… tends to vanish asn increases.

Since the ratios of the terms in Eq.~52! to n vanish as
n→1`, s„f 2n(wn)… for large n ’s is dominated by the ki-
netic part. Therefore the following estimation is finally ob-
tained for largen ’s:

s„f 2n~wn!…'ImT„p21~wn!…1Im T„p0~wn!…

5@Rep21~wn!#@ Im p21~wn!#1@Rep0~wn!#

3@ Im p0~wn!#

'~2np/g!xy. ~53!

In the last approximation, the relations in Eq.~38! are used.

FIG. 11. ~a! us„f 2n(wn)…u for n54 andn51 –1000. The sym-
bolic sequences ofwn’s are the same as in Fig. 9. The dotted line
represents 2np/g. Axes in ~a!–~c! have the same scale.~b! The
absolute values of the kinetic parts and the potential ones of
s„f 2n(wn)…. The upper dotted line and the lower dotted curve
represent 2np/g and 2g(A2np/g), respectively, where
g(x)5x/(2Ag ln x). ~c! uIm T„p21(wn)…1Im T„p0(wn)…u,
uIm V„q21(wn)…1Im V„q1(wn)…u, and uIm V„q0(wn)…u. The top
dotted line and middle dotted curve are the same as in~b! and the
bottom dotted curve represents@2g2g(A2np/g)#21.
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Next we estimates(w) for the homoclinic points appear-
ing in the Observation 2.

Observation 4. Let $w1 ,w2 ,w3 , . . . % be a set of ho-
moclinic points which appears in Observation 2. Then for
any integern, the following sequence is bounded:

s„f 2n~w1!…s„f 2n~w2!…s„f 2n~w3!… . . . . ~54!

Figure 12 shows the dependence ofs„f 2n(wj )… on j. In
the case of this figure, sequence~54! does not deviate largely
from s„f 2n(w)… for a homoclinic pointw which has the sym-
bolic sequence

. . . O O . b O O . . . . ~55!

This means that each element in sequence~54! is dominated
by the contributions from the flipping motions between com-
ponentsU(b) andU(O). Though not displayed here, when
wj ’s have symbolic sequences of the form

. . . a22 a21 . b b . . . b a0 a1 . . . , ~56!

we observed that sequence~54! does not deviate greatly from
the action for the case

. . . a22 a21 . b a0 a1 . . . . ~57!

Hence the imaginary parts of actions are mainly gained by
phase-space itineraries described by sequences other than
b b . . . b. This means that itineraries described byb b . . . b
can be semiclassically significant in the tunneling processes
since smaller imaginary parts of actions yield larger semi-
classical amplitudes. As in Observation 2, the same state-
ment as Observation 4 holds when the length of the sequence
b b . . . b is given by 2j 11 for wj .

We discuss why sequence~54! is bounded. Remembering
the discussion leading to conjecture~44!, one can see that
H„qj (wj ),pj 21(wj )…'0 for H(q,p)5T(p)1V(q) and for
large j ’s, sinceT„pj 21(wj )…'0 due to Observation 2, and
V„qj (wj )…'0 @hence V„qj 21(wj )…'0] as shown in Fig.
10~c!. Figure 10~b! shows homoclinic trajectories of our map
and trajectories for the integrable flow HamiltonianH(q,p)

with null energy. It can be seen that the homoclinic trajecto-
ries are along the integrable trajectories for the duration of
itineraries described byb b . . . b. In fact, we observed that
H„qk(wj ),pk21(wj )… almost vanish fork’s corresponding to
the duration. Hence the members of sequence~54! can be
evaluated by using the integrable trajectories. Since the
imaginary parts of actions of the integrable trajectories are
bounded~see Appendix C!, sequence~54! is expected to be
bounded.

By making use of Observations 3 and 4, we estimates(w)
for any homoclinic pointw, which has a symbolic sequence
of form ~22!. We denoteak5(xk ,yk ,nk) for any k and as-
sume thatnk is large if akÞO. Then two cases have to be
discussed.

First is the case where the symbolic sequence ofw does
not include a consecutive part,b b . . . b. For any integerk
and forakÞO, we approximateqk(w) according to Obser-
vation 1 by

qk~w!'~nkp/g!1/2~xk ,yk!. ~58!

For ak5O, we approximateqk(w) by (0,0). This approxi-
mation is equivalent to substituting (xk ,yk)5(0,0) into Eq.
~58!. From the relationpk215qk2qk21 , pk21(w) is ap-
proximated by

pk21~w!

'~p/g!1/2~xknk
1/22xk21nk21

1/2,yknk
1/22yk21nk21

1/2!.

~59!

Then due to Eq.~47!, Im T(pk21(w)) is approximated by

Im T„pk21~w!…'~p/g!~xknk
1/22xk21nk21

1/2!

3~yknk
1/22yk21nk21

1/2!. ~60!

Since the imaginary part of action gained at each time step is
dominated by the kinetic part, as discussed below Observa-
tion 3,s(w) is estimated by the sum over the terms in the rhs
of Eq. ~60! for k>1.

The second is the case where the symbolic sequence ofw
includes a consecutive part,b b . . . b. The imaginary part of
action gained along the itinerary described byb b . . . b is
negligible compared to that along the other part of the tra-
jectory, as discussed below Observation 4. From this fact, we
approximate the imaginary part of action for the trajectory of
b b . . . b by a null value. This approximation is equivalent to
evaluating the imaginary part of action only by its kinetic
part and then substituting (xk21 ,yk21 ,nk21)5(xk ,yk ,nk)
into Eq. ~60!.

As a result, whether a consecutive partb b . . . b is in-
cluded in the symbolic sequence or not, the imaginary part of
action is estimated only by its kinetic part

s~w!'(
k51

1`

Im T„pk21~w!…. ~61!

Hence substituting Eq.~60! into the rhs of the above, we
finally obtain estimation~25!.

FIG. 12. s„f 2n(wj )… for n54 and j 51 –100. The symbolic
sequences ofwj ’s are the same as in Fig. 10~b!. Solid lines indicate
s„f 2n(w)… for w’s which have sequences of form~55!.
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Figure 13 shows the imaginary parts of actions evaluated
from actual trajectories of homoclinic points and from sym-
bolic sequences assigned to the homoclinic points. Estima-
tion ~61! is based on the assumption thatnk is large if ak
ÞO, however, as shown in the figure, the estimation is still
valid for smallnk’s. This is because the approximation in Eq.
~58! is not so crude for smallnk’s, as is shown in Fig. 9~a!.

In each column of Fig. 13~a!, the smallests(w) is associ-
ated with a symbolic sequence . . .O O . O O . . . or
. . . O O . O O O b b. . . b O O . . . with b5(1,1,1). Ap-
pendix B shows such types of symbolic sequences, including
the case whereb5(21,21,1), attain the smallests(w) in
the whole candidates. In Sec. II F, we evaluated the tunneling
wave functions by the semiclassical candidate orbits de-
scribed by these types of sequences, typical behavior of
which was illustrated in Fig. 5~c!.

IV. CONCLUSION AND DISCUSSION

A. Conclusion

We have carried out complex semiclassical analysis for
the tunneling problem of a kicked scattering model which

creates chaotic dynamics in complex domain. Although clas-
sical motions in real phase space are simple, tunneling wave
functions exhibit a complicated pattern, which is typically
observed in chaotic systems. The wave functions were repro-
duced semiclassically in excellent agreement with fully
quantum calculations. It enables us to interpret the creation
of the complicated pattern appearing in the tunneling regime.
Complex orbits contributing to the semiclassical wave func-
tions are embedded in the hierarchical structure of initial-
value sets. The hierarchical structure is a reflection of the
emergence of a homoclinic tangle in complex phase-space,
i.e., the manifestation of complex-domain chaos, and pro-
vides the mechanism: the interferences of orbits over genera-
tions. On the basis of symbolic dynamics constructed in the
complex domain, phase-space itineraries of tunneling orbits
were related with the amounts of imaginary parts of actions
gained by the orbits. Incorporation of symbolic dynamics
with the complex semiclassical method has enabled us to
discuss quantitatively the competition among tunneling or-
bits and has elucidated the significant role of complex-
domain chaos in the tunneling processes of nonintegrable
systems.

B. Chaotic tunneling

We further discuss the role of complex-domain chaos
played in the semiclassical description of tunneling processes
in nonintegrable systems. In the present study, we adopted a
time-domain approach of the complex semiclassical method.
This approach is concerned with the real-time classical
propagation and has nothing to do with the instanton pro-
cesses. This means that real-domain paths are not connected
to complex-domain paths, in other words, both the real do-
main and the other domain are invariant under the classical
dynamics. Therefore all candidate orbits to describe tunnel-
ing processes are always exposed to complex-domain chaos,
not to real-domain one. In this sense, it is natural to consider
the role of the complex-domain chaos in our approach.

In our semiclassical framework, initial and final quantum
states are identified with classical manifolds in complex
phase space. The evolution of the manifolds is involved in
the stretching and folding dynamics in the complex domain.
The hierarchical arrangements of initial values which we ob-
served is nothing but the structure of the section of one back-
ward evolved manifoldf 2n(F) cut by the other manifoldI.
Our result here strongly suggests that the creation of the
hierarchical structure of initial-value sets is only due to the
emergence of complex-domain chaos, irrespective of the ex-
istence of real-domain chaos and also irrespective of the
types of tunneling, i.e., whether energy-barrier tunneling or
dynamical one@28#.

The chaotic dynamics in phase space is created on the
Julia set, which includes the complex homoclinic tangle in-
vestigated here. The trajectories in this set are proved to be
sufficient to describe tunneling in the case of the complex
Hénon map@18#. It was numerically confirmed here that this
statement is correct also in our case. Therefore, on the basis
of our present study and Ref.@18#, we would like to present
the notion of ‘‘chaotic tunneling,’’ which first appeared in

FIG. 13. Imaginary parts of actions evaluated from~a! actual
trajectories of homoclinic points and~b! symbolic sequences as-
signed to the homoclinic points. In each figure, the origin represents
a null imaginary part of action gained by the fixed point, (q,p)
5(0,0), associated with a symbolic sequence
. . . O O . O O O . . . . Thefirst to the third columns labeled bya1 ,
a1a2, anda1a2a3 show the imaginary parts of actions gained by the
trajectories of the homoclinic points associated, respectively, with
. . . O O . O O O a1 O O . . . , . . .O O . O O O a1 a2 O O . . . ,
and . . .O O . O O O a1 a2 a3 O O . . . , where a1 ,a2 ,a3

P$(1,1,n)un51,2,3%.
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Ref. @5#, as the tunneling in the presence of the Julia set.
In energy-domain approaches@6,7,13,14#, to the best of

our knowledge, the complex-domain chaos has not been used
explicitly in semiclassical calculations. The significant role
of the complex domain chaos played in the time-domain ap-
proach should have the correspondence in the energy-domain
ones. However, the instanton concept, which is intrinsic to
these approaches, makes it difficult to see such correspon-
dence. The reason is that even when one takes full account of
complex classical dynamics, the degree of freedom of the
path deformation on the complex time plane often allows one
to consider complicated classical processes in complex do-
main as the composition of real-domain chaotic processes
and instantonlike ones@7,13#. The authors of Ref.@13# have
reported complicated patterns of stationary wave functions
and explained them in terms of stable and unstable mani-
folds. This implies that both manifolds are the key objects to
relate time-domain and energy-domain approaches. We
would like to describe the tunneling phenomena in noninte-
grable systems in terms of the simple notion, chaotic tunnel-
ing. Therefore the role of complex-domain chaos in the
energy-domain approaches is desired to be clarified in further
studies.

C. Discussion

Finally, we itemize several future problems to make our
theory more self-contained, given as follows.

~1! We have constructed a partition of phase space in
terms of the phase part of the gradient of a potential function.
A similar approach can be found in the context of the study
on a dynamical system of an exponential map of one com-
plex variable@29#, where the boundaries of a partition corre-
spond to the contour curves of the phase part of the expo-
nential function. Genericness of our approach should be
examined in further studies.

~2! Reproducing tunneling wave functions, we did not
enter into details of the treatment of the Stokes phenomenon.
Empirically, symbolic sequences which include members of
the form (1,21,n) or (21,1,n) with nPN should be ex-
cluded from the whole candidates. In particular, according to
such empirical rule, we have excluded from the candidates
those trajectories which have almost null imaginary parts of
actions due to the cancellation between the imaginary parts
gained at individual time steps. When the conditionqn1k

5qn2k21* is satisfied for anyk>0 with n being fixed, where
the asterisk denotes the complex conjugate, the imaginary
parts of actions integrated over the whole time axis become
null. We observed numerically that such condition is satisfied
by the symbolic sequences of homoclinic points such
that the relation between symbols, (xn1k ,yn1k ,nn1k)
5(xn2k21 ,2yn2k21 ,nn2k21), holds for anyk>0 with n
being fixed. In fact, there is an infinite number of symbolic
sequences satisfying such relation. The criterion for whether
tunneling orbits well approximated by the homoclinic orbits
described by such symbolic sequences are semiclassically
contributable or not would be beyond our intuitive expecta-
tion based on the amount of imaginary parts of actions@25#.
The criterion should be given only by a rigorous treatment of

the Stokes phenomenon. The justification of our empirical
rule mentioned above needs the consideration of the intersec-
tion problem of the Stokes curves, and we are now investi-
gating this issue.

~3! In many nonintegrable open systems with the condi-
tion that V8(q)→0 as uqu→1`, real-domain trajectories
which diverge to infinity are indifferent, i.e., have null
Lyapunov exponents, in contrast to the case of open systems
with polynomial potential functions. Because of that, in the
former systems, generic properties of complex trajectories
exploring in the vicinity of real-domain asymptotic region
are not obvious, in spite of their semiclassical significant role
as has been seen in our present study. The result of the in-
vestigation of this issue will be reported elsewhere.
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APPENDIX A: NO CHAOTIC MOTION FOUND IN REAL
DOMAIN

We prove that Eq.~2! has no chaotic solution inR2 when
V(q) is unimodal, i.e.,2V8(q).0,,0, and50 for q.0,
,0,and50, respectively. More precise statement is that for
unimodal V(q) and any (q,p)PR2, if the forward ~back-
ward! orbit of (q,p) is bounded, then the forward~back-
ward! orbit is either fixed at (0,0) or approaching (0,0).

First, it is shown that any point except (0,0) diverges by
forward or backward iterations of the mapf. It is trivial that
(q,p)5(0,0) is a solution of Eq.~2!. Assume that a solution,
$(qj ,pj )u j PZ%, satisfiesq0p0.0. A relation q15q01p0

immediately leads us toq0q1.0 and uq1u.uq0u. Another
relation p15p02V8(q1) and the unimodality condition
2q1V8(q1).0 for q1Þ0 lead us top0p1.0 and up1u
.up0u. Then applying the discussion recursively, we obtain
that uqj u(5uq01p01•••1pj 21u) diverges asj→1`. In a
similar way, in the case thatq0p0,0, we obtain that
uq2 j u(5uq02p212•••2p2 j u) diverges asj→1`, though
one has to solve Eq.~2! backwardly. Whenq0p050 and
(q0 ,p0)Þ(0,0), eitherq1p1Þ0 or q21p21Þ0 holds, so that
the same discussion can be applied.

Second, it is shown that for any point except (0,0), if its
forward or backward orbit is bounded, then the orbit ap-
proaches (0,0). We only prove the case of forwardly
bounded orbits, since the case of backwardly bounded ones
is straightforward. Assume that a forward trajectory,
$(qj ,pj )u j PN%, is included inB, a compact set inR2. Then
there exists an accumulation value (q* ,p* ) in B for the
trajectory. By definition,f j (q* ,p* ) for any j PZ is also an
accumulation value. Since$(qj ,pj )u j PN%,B, we obtain
that $ f j (q* ,p* )u j PZ%,B. Any orbit both forwardly and
backwardly bounded must be (0,0) due to our former discus-
sion. Hence the fixed point (0,0) is the only accumulation
value, so that the orbit of (q0 ,p0) approaches (0,0). So the
statement has been proved.
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APPENDIX B: ORDER OF SYMBOLIC SEQUENCES

Here the order of symbolic sequences is given according
to the amounts of imaginary parts of actions estimated by Eq.
~25!. Let us consider a set of symbolic sequencesS:

S5$a0 a1 . . . an O O . . . un>0,akPS 8,k>0%,
~B1a!

S 85$~1,1,n!,~21,21,n!unPN%ø$O%. ~B1b!

For anys,s8PS, we define an equivalent relation by

s;s8⇔ s̃~s!5 s̃~s8!, ~B2!

wheres̃(s) denotes the value of the rhs of Eq~25! evaluated
for s. For any two members ofS/;, @s# and @s8#, the
order between them is defined by

@s#,@s8#⇔ s̃~s!, s̃~s8!. ~B3!

It is easily checked thats̃(s)>0 for any sPS and the
equality holds if and only ifs5O O O . . . . Then one ob-
tains

@O O O . . . #,@s#⇔sÞO O O . . . . ~B4!

For any @s# except @O O O . . . #, the representatives
can be chosen such that

s5a0 a1 . . . an O O . . . ~n>0!, ~B5a!

anÞO, ak21Þak ~1<k<n!. ~B5b!

For s in Eq. ~B5!, the following relations hold:

@an O O . . . #,@an21 an O O . . . #

, . . . . . .

,@a0 a1 . . . an O O . . . #5@s#. ~B6!

Since, for anynPN,

s̃„~1,1,n! O O . . . …5 s̃„~21,21,n! O O . . . …

, s̃„~21,21,n11! O O . . . …

5 s̃„~1,1,n11! O O . . . …, ~B7!

one of the following relations holds:

@~1,1,1! O O . . . #,@s#, ~B8a!

@~1,1,1! O O . . . #5@s#. ~B8b!

Finally, from Eqs.~B4! and~B8!, one obtains the relations

@O O O . . . #,@~1,1,1! O O . . . #,@s# ~B9!

for any@s# except@O O O . . . # and@(1,1,1)O O . . . #. It is
not difficult to check that@(1,1,1)O O . . . # is equal to

$b b . . . b O O . . . u b5~1,1,1! or ~21,21,1!%.
~B10!

APPENDIX C: IMAGINARY PARTS OF ACTIONS FOR
INTEGRABLE TRAJECTORIES

We consider a HamiltonianH(q,p)5T(p)1V(q) with
T(p)5p2/2 and V(q)5k exp(2gq2), and evaluate the
imaginary parts of actions for the trajectories which satisfy
H(q,p)50 and connect two infinities of theq plane
(Req,Im q)5(1`,0) and (0,1`). These trajectories are
included in the first quadrant of theq plane as shown in Fig.
10~b!. There are symmetric counterparts of the trajectories in
the other quadrants, and the application of the result here to
these is straightforward.

From the conditionH(q,p)50, one obtainsp(q)5

6 iA2ke2gq2/2. Then the actionS(q,q8) defined by

S~q,q8!5E
q

q8
@T~p!2V~q!#

dq

p
~C1!

can be written as

S~q,q8!56 iA2kE
q

q8
e2gq2/2dq. ~C2!

Let l be one of the integrable trajectories projected on the
q plane andqx5(x,x) be the intersection point betweenl
and the axis Req5Im q. Denoting q05(0,0) and q`

5(1`,0), and deforming an integral path,S(q0 ,q`) is rep-
resented as

S~q0 ,q`!5S~q0 ,qx!1S~qx ,q`!, ~C3!

whereS(q0 ,qx) andS(qx ,q`) are integrated along the axis
Req5Im q and the pathl, respectively. One immediately
obtains that

S~q0 ,q`!56 ia, ~C4a!

S~q0 ,qx!56a$@2C~y!1S~y!#1 i @C~y!1S~y!#%,
~C4b!

where a5Apk/g, y5A2g/px, and C(y), and S(y) are
defined by*0

ycos(pt2/2)dt and *0
ysin(pt2/2)dt, respectively

~Fresnel’s functions!. From Eqs.~C3! and ~C4!, one obtains

Im S~qx ,q`!56a@12C~y!2S~y!#. ~C5!

For our parameter valuesk5500 andg50.005, the tra-
jectory l satisfiesy.1.0. Since 0.6,@C(y)1S(y)#,1.4 in
this range ofy, one obtains that

2uIm S~qx ,q`!u,450. ~C6!

In particular, ImS(qx ,q`) vanishes asx→1`, sinceC(y)
andS(y) converge to 1/2 in this limit.
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