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We investigate the semiclassical mechanism of tunneling processes in nonintegrable systems. The significant
role of complex-phase-space chaos in the description of the tunneling processes is elucidated by studying a
kicked scattering model. Behaviors of tunneling orbits are encoded into symbolic sequences based on the
structure of a complex homoclinic tangle. By means of the symbolic coding, the phase space itineraries of
tunneling orbits are related with the amounts of imaginary parts of actions gained by the orbits, so that the
systematic search of dominant tunneling orbits becomes possible.
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[. INTRODUCTION scattering map. The semiclassical interpretation of compli-
cated wave functions was given in terms of oscillations of

Tunneling is one of the most typical and important phe-the stable manifold and an inherent property in flow systems,
nomena in quantum physics, and for the past several yeathe divergent behavior of movable singularities of classical
there is growing interest in natures of tunneling processesolutions on a complex time plane.
inherent in multidimensions. Quantum properties in multidi- In the near-integrable regime, the role of resonances has
mensional systems have been investigated extensively imeen elucidated in the tunneling transport between symmet-
terms of classical dynamical concepts in the fieldjodntum  ric tori by means of classical and quantum perturbation theo-
chaos[1], where the role of chaos, which is a generic prop-ries[14].
erty in multidimensional classical systems, has been eluci- In any case, if one wants to know the mechanism of tun-
dated. It was found that quantum tunnelings are also stronglgieling in chaotic systems by relating it with underlying clas-
influenced by whether underlying classical dynamics is chasical structures, the use of complex orbits is inevitd],
otic or not[2—8], though tunneling processes have no classince tunneling is a purely guantum-mechanical process and
sical counterpart. is not describable in terms of real classical dynamics. Full

Tunneling occurs typically between classical invariantaccount of such a process should, therefore, be given by
components separated in phase space, such as between regamplex classical dynamicAn attempt to make a full com-
lar tori or chaotic seas. On one hand, mechanism of tunneplex semiclassical analysis using the complex classical dy-
ing between distinct tori separated by chaotic seas has be&ramics has been performed to understand which kinds of
studied in the context athaos-assisted tunnelifg], and its  complex trajectories describe characteristic features of tun-
semiquantum analysis has been done, in which the diffusioneling in the presence of chaos, and how the complex clas-
process in the chaotic sea accompanied with tunneling pathscal dynamics actually enters into real physical processes
from and into the tori around the boundaries of the sea i$5,16,17.
considered to dominate the tunneling transgéit Experi- In Ref. [5], it was found that the initial values of orbits
ments have also been performed by measuring microwawwhich play a semiclassically primary role form chainlike
spectra in the superconducting ca\i§j and measuring mo- structures on an initial-value plane. A phenomenology de-
mentum distributions of cold atoms, which was theoreticallyscribing tunneling in the presence of chaos based on such
proposed in Ref[10], in an amplitude-modulated standing structures has been developed.
wave of light[11,12. In Ref. [16], the first evidence was reported which dem-

On the other hand, tunneling between two chaotic seaenstrates a crucial role @omplex-phase-space chaiosthe
separated by an energy barrier was studied by symmetridescription of tunneling processes by analyzing a kicked
double wells[7]. It was shown that the spectra of tunnel scattering model. A hierarchy was found in the configura-
splittings are reproduced by the orbits which consist of in-tions of chainlike structures on the initial-value plane, and
stanton processes under the barrier and homoclinic exploravas interpreted as the manifestation of the emergence of
tions in each chaotic well. chaos in the complex domain.

Generic aspects of the link between tunneling processes Very recently, the chainlike structures were shown to be
and real-domain ones in nonintegrable systems were exanstosely related to thdulia setin complex dynamical systems
ined in oscillatory scattering systeni$3]. They made an [18]. The Julia set is defined as the boundary between the
energy-domain analysis for a model with continuous flowsorbits which diverge to infinity and those which are bound
while in the present study we make a time-domain one for dor an indefinite time. Chaos occurs only on the Julia set

[19]. In Ref.[18], it was proved that a class of orbits which
potentially contribute to semiclassical wave functions is
*Electronic address: t_onishi@comp.metro-u.ac.jp identified as the Julia set. It was also shown that the transi-
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tivity of dynamics and high density of trajectories on therelation between the symbolic sequences and the imaginary
Julia set characterize chaotic tunneling. parts of actions for the homoclinic orbits. A symbolic for-
However, there still remains a problem in complex semi-mula for the estimation of imaginary parts of actions is fi-
classical descriptions. Dominant tunneling orbits are alway#ally derived.
characterized by a property that the amounts of imaginary In Sec. IV, we first conclude our present study, and then
parts of classical actions gained by the orbits are minimafliscuss the role of complex-domain chaos played in semi-
among the whole candidates. It is, however, difficult to fingClassical descrip_tions of tunneling processes in nonintegraple
such dominant orbits out of the candidates, because an expdYStéms. In a wide range of the tunneling processes, the im-
nential increase of the number of candidates with time prePOrtant role of the complex-domain chaos is suggested. Fi-
vents us from evaluating the amount of imaginary part oflly some future problems are presented.
action for every candidate.
To solve this problem, in this paper, we investigate the Il. SEMICLASSICAL STUDY ON TUNNELING
structure of complex phase space for a kicked scattering PROCESSES VIA COMPLEX-DOMAIN CHAOS
model, and relate the structure to the amounts of imaginary
parts of actions gained by tunneling orbits. Our main idea is
to relate the symbolic dynamics of a homoclinic tangle We introduce a model which will be used in our study.
emerging in complex domain to the behavior of tunnelingThe Hamiltonian of the model is given as follows:
orbits. It enables us to estimate the imaginary parts of actions

A. Tunneling in a kicked scattering model

+ o0
gained by the orbits from symbolic sequences. _ B
The organization of the paper is as follows. In Sec. II, the H(q,p,t)—T(p)vLV(q)n:E_w o(t—n), (1a
symbolic description of tunneling orbits is developed. This
description requires an effective symbolic dynamics con- T(p)=p%2 (1b)

structed on a complex homoclinic tangle. In this section, we
emphasize the importance of the application of symbolic dy- _ 0
namics to tunneling problems, and the details of how we Via)=kexp(— a7,
construct the symbolic dynamics itself is deferred to Sec. lll.

So it should be noted that in Sec. Il we use the results in Seéf’;e height and width of an energy barrier are giverkiand

[l without any technical details. 2y . . . o
More precisely, in Sec. II, tunneling processes are inves-l_/ 27, respectively. A set of classical equations of motion is

tigated by a time-domain approach of complex semiclassicdlVen by

method. We introduce a scattering map which would be the

simplest possible map modeling an energy-barrier tunneling (Qj+1,Pj+1) =F(q5,py), (23

in more than one degree of freedom. Though real-domain

chaos is absent in this model, it is shown that tunneling wave f:R?—R?(q,p)—>(q+T'(p),p—V'(d+p)), (2b)
functions exhibit the features possessed by the tunneling

ones in the presence of real-domain chaos, such as the exigherej is an integer denoting a time step and the prime
tence of plateaus and cliffs in the tunneling amplitudes andlenotes a differentiation with respect to the corresponding
erratic oscillations on the plateaus. argumentR? denotes real phase space.

It is elucidated that such tunneling features originate from This model has the following characteristics. First, no
chaotic classical dynamics in the complex domain; in othechaotic motion and no periodic orbit except a fixed point
words, the emergence of a homoclinic tangle in the complexd,p) = (0,0) is found in real phase space, in contrast to, e.g.,
domain. The symbolic description of the tangle is introducedhe real phase space of the standard 28 Such a simple
and is applied to the symbolic encoding of the behaviorssituation can always be realized wh¥(q) is unimodal(see
exhibited by semiclassical candidate orbits. The amounts ohppendix A. Of course, topological entropy in real phase
imaginary parts of actions gained by the orbits are evaluategpace is null. Second, no singularity is found in the solutions
in terms of symbolic sequences assigned to the initial pointsf Eg. (2) whenf is extended taC?, since ourV(q) is an
of the orbits. Dominant tunneling orbits are determined ac-entire function. As seen later, the structure of complex phase
cording to the evaluated actions. space is our main concern. However, the singularities would

In the final part of Sec. I, tunneling wave functions are make the structure overcomplicated. The present study fo-
reproduced in terms of such dominant orbits, and the charcuses on the features of wave functions which are observed
acteristic features appearing in tunneling amplitudes are exfrespective of the existence of singularities \itq), e.g.,
plained by the interference among such dominant orbits. observed for ouV(q) andV(q) =k seclfyq which has sin-

In Sec. Ill, the technical aspects which are skipped in Seqqularities atq=im(n+1/2)/y (k,y>0neZ). Hence our
Il are described in full detail. We first investigate the con-model is suitable to study typical aspects of energy-barrier-
struction of a partition of complex phase space, which entunneling processes without real-domain chaos. For our
codes the homoclinic points into symbolic sequences. Theanalysis to be generic, consideration must be given to the
some numerical observations are presented which relates tisase of real-domain chaos. In the aspect of the number of
symbolic sequences and the locations of homoclinic points irsemiclassically significant orbits, differences do exist be-
phase space. On the basis of the observations, we study thgeen such case and our case, as mentioned in Sec. Il F.

(19

herek andy are some parameters with positive values, and
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where o is a positive parameter and the width of the wave
Dt (O, O) 4 packet in they direction is given bw# o g, andp,, are the
position and momentum of the center of mass, respectively.
- 1 Figure 1b) shows the propagation of the wave packsde
=z NS also Fig. 6a) for an enlarged orle
i " ] Our semiclassical argument based on the analysis formu-
VVu WS lated in Sec. Il B requires a large amount of numerical trial
-60 * ' * * * and errors even for a single set of parameter values.
-300 q 300 Throughout the present study, we fixed the parameters
— y — K,y,0,d,,P,, @and#, as given in Fig. 1. The parameter val-
_ ues selected here are favorable to us in the following senses.
n=4 | First, A=1 realizes large tunneling amplitudes, though the
system is in the semiclassical regime. In fact, it is observed
that the minimum tunneling actioris- 10'; see the caption
of Fig. 6(b)] are much smaller than the characteristic action
of real-domain classical dynamics-(L0?), as given in the

=8 n=12 limit with null energy has the imaginary part of action,
| | Imf*2[T(p)—V(q)]p dg= V4mk/iy~1121,  however,

=0

Gyl

. 10 caption of Fig. 1b). The instanton trajectory of an integrable
$10° =
3
(5‘10_15_ | this action is not useful for estimating the minimum tunnel-
= ing actions in our time-domain approach. Second, latge
| ] makes complex classical dynamics highly unstable and then
10_400 g 400 allows us to discuss the symbolic coding of complex orbits.

The other parameters were selected to fit simultaneously the

FIG. 1. (8) Real-domain stable and unstable manifolds of theconfiguration of scattering problems and our requirements
origin (k=500, y=0.005). The origin is an unstable fixed point that tunneling processes occur as early as possible in order to
when k,y>0. (b) The time dependence of the wave function, reduce the amount of semiclassical computations.
evaluated quantum mechanically for=0-12 in every four time Tunneling wave functions in Fig.(ih) exhibit amplitude
stepg =1, 0=10,q,=—123,p,=23, with the sam&andy as  crossovers, plateaus and cliffs, and erratic oscillations on the
in (g)_]. Dotteo_l I|r_1es represerg=0. The center of mass, whose plateaus. The same features have been reported in the case of
positions are indicated by arrows, is reflected by the potential bardynamical tunneling processes in mixed phase sgage
rier, and so the amplitudes observed in the transmitted region "®Prhese are called the “plateau-cliff structure,” which has
resent tunneling effects. A characteristic action of the classical SYSheen confirmed in several systems as a typiéal structure of
tem, which we evaluated numerically by the phase-space areﬁmneling wave functions in the presence of real-domain
corresponding. to a single oscillation of the stable manifiitke chaos[5]. However, as seen in our model, the existence of
hatched area i@, is 153. the plateau-cliff structure does not always need chaotic dy-

However, the study in our case is necessary for the first steP"’”‘n'CS in real phase space. So, the features of wave func-

to the semiclassical understanding of energy-barrier tunne lons observed here would be beyond our intuitive expecta-

ing in nonintegrable systems. tion based on the real classical dynamics. This strongly

Figure 1a) shows the real phase space of our model. Thé'notiv_ates the use of complex trajectories and complex semi-
stable and unstable manifolds of the fixed point at the origirf'assical analysis.
are denoted byV® andW", respectively. As a direct conse-
quence of the absence of real-domain chaos, both manifolds ~ B: Formulation of complex semiclassical analysis
do not create homoclinic intersections. To simplify our formulation, we begin with the definition
The guantum-mechanical propagation for a single timeof a pair of canonical variables
step is given by the unitary operator

_9 . S P
(Q,P)—\/E( ipt+qo S, p—iqo ). (5

Ozexp{—%—V(d) ex;{—;i—T(f)) , (3)

- - . For (do.pPo) and @, ,P.), Which are the initial values of the
whereq and p denote position and momentum oqe[ators,mapf and the center of wave packét), respectively, we
respectively, which satisfy the uncertainty relatipqg,p] denote

=i#. An incident wave packet is given by a coherent state of

the form (Qo,Po)=(Q(do,Po), P(dg,Po)), (6a)
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(Qa:Pa)=(Q(da,Pa) P(dy»Pa))- (6b)  vields a set of canonical transformation&,/dq,|p,=pn
andaGn/aP0|qn= —Qo. The outline of the derivation of Eq.
(12) follows the conventional ong21], so we omit the de-

scription of it. For details, readers refer to the Appendix of
Ref.[5].

The wave function(q|U"|q,,p.) is represented by the
n-fold multiple integral

i
AnJ’ qu"'dqnfleXpﬁSna (7)
C. Hierarchical configuration of initial values
which is a discrete analog of Feynman path integral, where The complex phase space of mo¢®l has a complicated

A= (mha?) Y 2mih) "2, (8a) structure in contrast to the real phase space. Figueg 2
shows a typical pattern aM,,, which consists of a huge
n number of strings. The finest scale structure\df, is shown
snzz L, (8b) schematically in Fig. @). Each string covers the whole
=0 range (~«,+x) of the finalqg, axis, so we call it d&ranch
_ In the latter figure, branches are linked to each other in the
Li=T(pj-)—V(a)(j=1p;-1=0;=0j-1), (89  nhorizontal direction with narrow gaps, and they are said to
form a chainlike structure[5,16] (the authors in Ref[5]

i _ 2y _
Lo=i(do—C+P,)(do—C-P,)/(20°)—Q,P./2 called it aLaputa chain. Our classical and semiclassical
—io(y2=1 8 discussions are concerned with the branches which form
[c.=To(v2E1)]. (8d) chainlike structures. The other branches are found in both

The saddle point approximation for the integral is imple_sides of each chainlike structure, which look like a pair of

mented to derive the semiclassical Van Vleck’s formula, ins'tia anemont?tf gs. ST:QW” én thg Ie;t—ha_\rnhd Inset c|>f F@' |2

which the wave function is expressed by purely cIassicaI[ €y aré omitted In |g§.( ) and 2d)]. The semiciassical.

dynamical quantities. Each saddle poing( 1) contribution from them is negligible, see the discussion in
. s e

e C" should satisfy a set of classical equations of motion and‘sec' Il F. Here we will explain the_ mgrphology OM“ n
boundary conditions terms of these notions, and by relating it to the manifold3

and W" which are extended to the complex domain. More

(9j+1.pj+1)=F(g;.p) (0<j<n), (9  precisely, the following three facts will be explained: First,
the chainlike structure is created by the orbits propagating
(do.Po) €7, (9b) alongW?® and W"; second, branches iM,, have a hierar-
chical configuration orf; and third, the intersection
(On,Pn) € F, (99 M=TNWS, (13)
wheref:(2— (2 is the classical map extended into complex
phase space, aril F stand for manifolds defined by is the main frame of the configuration of branches. Hereafter
we identify C?> with R*, and mean a “curve” as a one-
I={(q,p) e C*|P(q,p)=P.}, (109  dimensional manifold inR* and a “disk” as a two-
dimensional one in there.
F={(q,p) e C*|Imq=0}. (10b) When the magf in Egs. (2) is extended td?, both WS

and W' are two-dimensional manifolds in there at least lo-
cally. SinceT is also a two-dimensional manifold, the dimen-
sion of the intersectioM is lower than 1 in general, i.e., the
intersection is neither a set of curves nor a surface, but may
e fractal such as the Cantor set, the Hausdorf dimension of
which is less than one.
by We begin with the creation of the chainlike structure. For
_ -n a point inW?* denoted byw and a small diskA which in-
Ma=INT ). (D cludesw, the dynamics ofA is described as follows. By
Then the semiclassical Van Vieck's formula of definition, the orbit ofw converges to the origin. Alst(A)

Since the initial “momentum’Py, is fixed by Eq.(109, the
shooting problen(9) will be solved by adjusting the initial
“position” Qg in Z. Condition(9¢) is required since we want
to see here the wave function as a function of a real fin
positiong, . A set of initial points satisfying Eq$9) is given

(An|U"da, P, takes the form first approaches the origin &sincreases, however, it in turn
spreads alongV", and finally almost converges /".
PG, |Y2 i ) This process is described in more detail. ko1, the
— n n p
2k 1/4 . . . .
(2mh) (G0.Po) e My | 9AndP x| S5 ) intersection betweeff(A) and the neighborhood 6f(w) is

(12) approximated by a small disk’ which is tangent toAV" at
the origin. Then the points oA’ are parametrized by a small
where the sum is over the complex orbits whose initial pointscomplex numberz such that (q(z),p(z))=(z,(A —1)2),
are located onM,, just defined.¢,(qg,po) is the Maslov  where\ is the maximal eigenvalue of the tangent mayh af
index of each complex orbit.G,(q,,Pg)=S,+i(gy the origin and is a real number. Thg component of
—¢.Po)(go—c_Po)/(20?) is a generating function which f™(q(z),p(z)), denoted byy,(2), is a holomorphic function

056211-4
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FIG. 2. (a) M,, for n=10 plotted onZ. Bro-
ken curves around Ingy—Q,)=0 are the
branches finally used for the construction of
semiclassical wave functionsee Fig. 6. There
are two insets: the right-hand one enlarging a
small area indicated by a solid arrow and the left-
hand one enlarging a small area indicated by a
dotted arrow. (b) Schematic representation of
branches which form the horizontal center line in
the left-hand inset ofa). The center dot repre-
sents an element oM defined in Eq.(13).
Hatched and nonhatched parts are mapped"by
to the bold and thin parts iric), respectively.
There is a causti®Q, defined byﬁqn/ﬁQo|p0
=0 in a narrow gap between every neighboring
branches(c) The images of the branches ¢h)
by f" for n=10, projected on real phase space.
Bold and thin parts almost agree with the real
domain WY and the nonrealV", respectively
(for the real domaifV", see Fig. L The parts of
images which have quite largemp,|'s are omit-
ted. The creation of caustics {b) are due to the
oscillations of the real-domain". (d) The con-
figuration of chainlike structures included in the
right-hand inset ofa). A solid square at the cen-
ter of each chainlike structure represents an ele-
ment of M. (e) A variety of behaviors exhibited
by orbits launching fromM. Solid and broken
lines represent Rg and Imq, respectively. In the
right column, the initial points of the trajectories
belong to the sixth, eighth, and tenth generations,
respectively, from top to bottom.

of z for any m>0. Then due to the reflection principle of Then in a similar wayA N f ~"(F) includes, on th&), plane,
holomorphic functions, the intersectioh’ Nf~™(F) [see aline throughw and a set of curves symmetric about the line
Eq. (10) for the definition of7] includes, on the plane, the and perpendicular to the line at the points satisfying
real axis Imz=0, and a set of curves symmetric about thedq,(Q.)/dQy= 0. The last equation is equivalent to the con-
axis and perpendicular to the axis at the points satisfyinglition which defines caustics afi in the original problem
dgn(z)/dz=0. (9). Finally, by takingA onZ, the configuration of a line and
The approximation used above allows one to consider thaturves on th&, plane just described explains the creation of
ANT"(F) for n=k+m includesf 8(A’Nf ™(F)). Re- a chainlike structure.
placing f* aroundw by its linear approximation, and taking ~ The mechanism mentioned above suggests that chainlike
Qo as a coordinate oA, one can relat€, andz linearly.  structures are created around any elementdl afs the time
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step increases. We numerically confirmed that the inverse is We study phase-space structures in terms of a coordinate
true, that is, any chainlike structures are created around elen)V® defined as follows. Le® be a conjugation map from
ments ofM, as shown in Fig. @). Figure Zc) shows that C to W3, which satisfies the relation

f"(A) almost convergegV" even forn=10. In this way, the . . )

creation of chainlike structures is explained by the dynamics (@ fP)(§)=N""¢ for £eC, (14)

of a small disk first approaching real phase space with the ) i
guide of WS, then spreading overV!. It should be noted where\ denotes the maximal eigenvalue of the tangent map

that this process is not specific to our dynamics, but is th&f f at the origin[23]. The ¢ coordinate is normalized in the

one that the stable and unstable manifolds always hav&€nSe thaf is represented by a linear transformation on the

Hence the process can take place also in real-domain dynarﬁQOfd'Uate- h[ote that a similar g:oorﬂngte is definedvgh
ics and even in integrable one, whether one takes time2y taking ®:C—W efqd replacing\ ~~ in Eq. (14) by X.
domain approaches or energy-domain ofisj. Hereafter we denote ¢=14(¢). .
Next we discuss the configuration of branchesZorig- Fl_gure 3a) shpws a set of hom0(_:I|n|C points of.the origin,
ure 2d) shows the schematic representation of chainlikePPt@ined numerically on the coordinate. In the figure, en-
structures inM,,. As shown there, small chainlike structures 12r9ing the neighborhood of any homoclinic point, one can
are arranged on both sides of the central large one, and tH{i!d the configuration of homoclinic points similar to the
same arrangement repeats around each of the small chainliRéiginal one with finer scal¢for enlarged figures, see Fig.
structures. This observation means that the branchesjn 4] uThe set of homoclinic points looks basically the same
have a hierarchical configuration. Then it may be natural " ¥V, and also one can find there the self-similarity just
assign agenerationto each chainlike structure in the hierar- described. Hence it is numerically confirmed thathe-
chy. For example, in Fig.(@), we can say that the first four Moclinic tangle emerges in complex phase space. The
generations are displayed. present model tells us that null topological entropy in real

Since chainlike structures are created around elements §f1@s€ space does not always exclude the existence of chaos

M, these elements also have a hierarchical configuration 48 COMPplex domain. _ _
shown in Fig. 2d), and it can be said thafl constitutes the ~___Figure 3b) showsM plotted on the same coordinate with
main frame ofM,, . Generations are assigned to the element§lifférent scale. Similarity to Fig. @) is evident, which sug-

of M in the same way as to chainlike structures. The structur@®sts that t_he qreat|on_of the hierarchical configuratiolof

of the orbits launched fror is important for our semiclas- &S Shown in Fig. @), is due to the emergence of the ho-
sical analysis because of the following reasons. The first i§10¢linic tangle in complex domain. The relation between the
that these orbits describe well the behaviors of the orbitStructures oM and of the homoclinic tangle is made more

launched from chainlike structures toward real phase spac&!€a" by the notion of generation introduced in Sec. Il C. To
The second is that the study of orbits on the stabteun- see the relation, we give the precise definition of generations.

stablé manifold is suitable for more canonical arguments-€t D be & connected domain in tkieplane which satisfies
since they are compatible with the theory of dynamical systh€ conditions
tems[22].

Figure 2e) shows a variety of itineraries of the orbits
launched fromM. In the left column, the top row shows a
typical behavior observed iM, where both Reg and Imq
oscillate in an erratic manner for some initial time steps aanenotingD’z D—f
eventually approach the origin. Regular itineraries such afamily of disjoint d
periodic oscillations coexist among stochastic itineraries as

(0,0 €D, (158
f(D)CD. (15b)

<(D), the ¢ plane is decomposed into a
omains as follows:

shown in the middle row, where an approximately two- U fY(D")=C—{(0,0}, (169
periodic behavior is seen. Another type of orbit is shown in nez

the bottom row, where the trajectory first oscillates with pe-

riod 2 and then turns into a three-periodic motion. The close fDHNFAD )=¢ (Mm#n). (16b)

relation between itinerating behaviors and the notion of gen-
eration can be seen clearly in the case of periodic oscillaThus for any point in this plane except (0,0), there exists a
tions, as shown in the right column of the figure. In each rowynique integen such that¢ e f;"(D’). Then the generation
the length of time for which a trajectory keeps oscillating of the point ¢ is defined as the integer. This definition
agrees with the generation of the initial point of the trajec-ajlows us to assign generations to the homoclinic points.
tory. Figure 3a) shows the shape db. Note that under the
conditions in Eqs(15), the relations in Eqs(16) hold irre-
spective of the shape. In our earlier publicat[d6], D was
The hierarchical structure dl is the manifestation of chosen as a disk. In the present study, another choiCeisf
chaos. To see this, two facts are shown here. The first is thgroposed. We describe the shape in a specified manner in
the homoclinic tangle o#V* and W" emerges in complex Sec. Il.
phase space. The second is that the hierarchical structure of For any point inD which is sufficiently close toé
M is created as a consequence of the emergence of the(0,0), the forward orbit approaches the origin straightfor-
tangle. wardly at an exponential rate in the original coordinate

D. Emergence of a homoclinic tangle in complex phase space
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FIG. 3. (a) The set of homoclinic pointsy*NW", plotted on
WS. The center of the figure corresponds tpf) =(0,0), and the
points on the horizontal axis are included in real phase space. The
domainD in Eq. (15) is enclosed by solid curveé) The intersec-
tion M plotted onWS. (c) The horse-shoe map on a plai® and
W for a fixed pointO creates a homoclinic tangle. A solid line
across the tangle and a bold curve)dit are analogous with ouf
andD, respectively. A dotted line is the boundary of partition which
creates binary codes. Due to the horse-shoe dynamitsin the
nth generation has"2intersection points wittf.

FIG. 4. (a) Intersection between thgplane and the boundaries

(q,p). For any point in theath generationif=1), it takes at of the _partition. Each boundary is a th_ree_—dimensional manifold

leastn steps until the orbit starts to approach the origin ex-according to Eq(19), so that the intersection is a set of Cl_Jrves._The

ponentially, and thus it can exhibit a variety of behaviorsCUrves labeled bya,b,c, and d indicate the boundaries with

during its itinerary. That is why the oscillations shown in Fig. ¢¥:»)=(1,11),(1,12),(1,1,3), and (15 1,1), respectively(b)

2(e) are related with the generations. Boundane; ofbl) 7?a_n(_j(b2)_f(73) plotted in the same range of the
The similarity between Figs.(8 and 3b) suggests that 13 plane_, Wlth homogllnlc points superposed. The generations of the

the behaviors of orbits launched frolh are similar to those homaclinic points displayed are lower than or equal teb) The

. . . enlarged figure of the hatched part(b2). The boundaries of(P)
of homoclinic orbits. Actually, we numerically checked that fail to divide the set of homoclinic points clearly, in the hatched part

for any element ofM, a homoclinic point is found in the (b3). (b4 The enlarged figure of the hatched part(b8). Ho-

same ge_neration as the element, such th"‘,‘t,the qrbit Qf ,tnﬁoclinic points are aggregated densely like a thick band. The
element is well approximated by the homoclinic orbit. This is boundary curves might touch the set of homoclinic points.

the working principle of our symbolic description for the
elements oMM, as seen later. Therefore the hierarchical contangle of WW* and W". ReplacingC in Eq. (168 by R, one
figuration of M displayed oriZ represents, via similarity be- can define generations in a similar way.
tweenM and a set of homoclinic points, the structure of the  Once we know that chaos exists also in the complex do-
homoclinic tangle, in other words, is a piece of evidence formain, the methodology studying chaos in the real domain
complex-domain chaos. can be applied to the analysis on the complex domain. In
More generically, one can say that the hierarchical conparticular, symbolic dynamical description of orbits, which is
figuration of M on Z is the manifestation of chaos, whether available if one finds a proper partition of phase space to
the configuration emerges in real domain or in complex dodefine it, is a standard technique in the theory of dynamical
main. Figure &) shows an analogy of our present situationsystemg22], and can be a very useful tool to analyze com-
with a horse-shoe map on a plane. In the case of this maplicated phase-space structures. Homoclinic orbits are also
INWS and ZNW" form the Cantor sets, and the fractal describable in terms of the symbolic dynamics, so our strat-
structures of these intersections are originated from thegy to study the hierarchical configuration Mfhereafter is
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to take the symbolic description of homoclinic orbits. ary is included.v is the squared “distance” between the
boundary and the origin, in the sense that the axigjRe
E. Symbolic description of complex orbits =Imqg on the q plane intersects the boundary at

We will explain the symbolic descriptions of complex ho- ~(xvvmly.yy V7T./.7) for v>1. . '
moclinic orbits and semiclassical candidate orbits. For the Then our partition, denoted b, 'S_ defined as a set of
description of complex homoclinic orbits, we constructedphase'Space companents as follows:
symbolic dynamics which works effectively and estimated

the imaginary parts of actions for the homoclinic orbits. The P={Uy.)|(xy.v) e S}, (213
final results of this study are presented here, and the detailed
explanation is given in Sec. Ill. On the basis of the results, S=7U{(0,0,01}, (21D

the symbolic description of semiclassical candidate orbits is -
developed in the following way. First, the elementvoaire  WhereU(x,y,») for (x,y,») e 7, whoseq component is dis-
encoded into symbolic sequences. We compare both configipl@yed in Fig. 4a), denotes the region enclosed by two

rations of homoclinic points and the elementdvhfon the& oundaries associated with,{,») and (X’y’_”+ 1), and
coordinate defined omVs. A clear similarity between both YJ(0.0.0) denotes the complement of the union of all phase-

configurations enables us to find, for each elementipfa ~ SPace components encoded to the elements @he origin,
homoclinic point located in the neighborhood of the elemen{d:P)=(0.0), is included inJ(0,0,0). .
of M. Since the homoclinic point is already encoded into a Figure 4b) shows the¢ plane divided byf"(7) for n
symbolic sequence, we encode the elemenMointo this =0 @nd 1. The central domain in Figi) is the domairD,
symbolic sequence. Next, semiclassical candidate orbits aiéhich was introduced in Sec. Il D. The domanis deﬁnesd
encoded into symbolic sequences. Since the behaviors of P the & plane as a connected domain d{0,0,0)N W
bits launched from a single chainlike structure are describeWhich includesé=0. If f(P) for anyn=0 divides clearly
by the orbit of an element dfl located at the center of the the set of homoclinic points displayed here, theris the
chainlike structure, we assign the symbolic sequence of thgenerating partition, i.e., relatioid7) holds forP [it is suf-
element ofM to all initial points in the chainlike structure. ~ficient to consider the case of=0 since any homoclinic
Symbolic dynamics is usually constructed by finding aPoint is mapped to the region displayed in Figb¥ by the

generating partitiorg, which is the partition of phase space iterations off]. o o
satisfying the relation On one handf"(P) for n=0 divides a set of homoclinic

points clearly as shown in Fig.(#1). This means that our

o partition is a reasonable approximation of the generating par-

n=\{m (9= €, 17) tition. So by means o, we can construct a symbolic dy-
namics which works effectively. On the other hand, there are

where the left-hand sidéhs) is the product of all partitons Some regions in th& plane wheref"(7P) for n=1 fails to

created byf"(G), and the right-hand sidehs) is the parti- divide the set of homoclinic points clearly. In such regions, it
tion of phase space into its individual poii22] (here we May be necessary to improve our partition to obtain the gen-
should consider the “phase space” as the closure of a set dirating partition, and it is our future problem. Note that our
homoclinic points of the origin Roughly speakingg is the ~ complex dynamics is not proved to be hyperbolic, and that
partition of phase space such that each separated compondp existence of the generating partition for nonhyperbolic
of phase space corresponds to a symbol, and for every bfystéms is an open problem. The improvement of the parti-
infinite sequence of symbols there may at most exist ondon is of mathematical interest, however, as actually demon-
trajectory of the original map. In our case, a partition of strated below, the present definition®fis sufficient for our

complex phase space is defined in terms of the phase part 8¢miclassical analysis.

+ o0

V’(q) which appears in the form In terms of P, each homoclinic point is encoded into a
bi-infinite symbolic sequence of the form
V'(q)=—2ykexd —A(q)—iB(q)], (18)
] N ...00a pa (n-1y---a-1.802;...2,00...,
where A(g),B(qg) e R. The boundaries of the partition are (22)
defined by

o where 0=(0,0,0), ne N, anda,e S(|k|<n). The symbol
{(a,p) e C*[B(a)=[2vxy—(3x+1)y/2]m},  (19) 5 tepresents that the image of the homoclinic pointbys
included in a phase-space componeiit,) defined in Egs.
(21). The finite sequence @, ’s is accompanied with semi-
T={(x,y,v)|(x,y) e{+1,—1},veN}. (20) infinite sequences oD’s on both sides. It reflects that any
homoclinic point approaches the origin of phase space by
The intersection between tleplane and the boundaries of forward and backward iterations df In particular, ho-
the partition are shown in Fig.(d. x andy in Eq. (19 moclinic points included inD are encoded into symbolic
represent the signs of Reand Imqg of the points on a sequences of the form
boundary respectively, i.e., the pair wfandy specifies the
guadrant of they plane where thg component of the bound- ...00a ,a (h-1)...2a.1.00..., (23

where §,y,v) is an element of the set
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wherene N anda, e S(0<k=n). Any symbol on the rhs of 80 @
the decimal point i, since the forward orbits are always = o (1}) 0(:1) (:} (:9 (:9
included in a component (O) due to Eq.(15b). S VT o

For a homoclinic pointv, which has a symbolic sequence & 0 ('i) (‘{)(",1) (*i) Y
of form (22), let us consider the imaginary part of action of _38
the form ()]

offjofdo f)o
flofoffoo

s(w>=k§1 IM[T(Pi_1 (W)= V(qe(w)], (24

-8
80 )
where (g (W), pi(w)) stands f_orfk(v_v). When we denote (:i) (:i)o 0000
a=(Xx,Yk,vy) for keZ, s(w) is estimated by /— 0000000
T 12 172 12 172 _800 time step 15
;kzl XV =Xk 1Vies D) (Vv = Yi-1%iC1), - (25)

FIG. 5. The trajectories launched froM, and symbolic se-

where y is a parameter o¥/(q). The derivation of formula duences assigned to their initial poirtdements of each column

(25) is presented in Sec. Ill. vector arex,y, and v from top to bottom. A semi-infinite part,
From these results, we discuss the symbolic description gP©OO - - - . is onitted in each sequence. Solid and broken lines

semiclassical candidate orbits. L&t, be a subset oM  rePresent Rq and Imq, respectively. The trajectories shota)

whose members belong to generations lower thafhen we erratic m_otlons,(b) approximately two-periodic motions, an@)

observe numerically the following two facts: first, the clearmonOtonlcal approach to real phase space.

similarity between Figs. (8 and 3b) enables us to find, for _ ) _ o )

any element oM, and in its neighborhood on theplane, a tions for semiclassical candidate orbits is attributed to the

homoclinic point which has a symbolic sequence of the fornstimation of those for homoclinic orbits. There are branches
not included in any chainlike structure, and no symbolic se-

...00.808; ...a,_300... (a,_3#0). (26 guence is assigned to them. However, semiclassical contri-
butions from them are negligible. This issue is discussed in
Forn=2, M, has only a single element, and a homoclinicthe following Sec. Il F.
point which has ..00.0...00... corresponds to the
element. Fon=1, M, is a null set. Second, on the plaiig

T F. Reproduction of tunneling wave functions
the elements oM,, are located at the centers of chainlike P g

structures inM,, [see Fig. 2d)]. Semiclassical wave functions are constructed from sig-
From the first fact, to each point d¥1,, we assign a nificant complex orbits selected according to the amounts of
semi-infinite symbolic sequence of the form imaginary parts of actions. The semiclassical mechanism of
the tunneling processes is explained by the structure of com-

apd; ...a,_300.... (270  plex phase space.

The sum in Eq.(12) is evaluated in three steps: First,

Figure 5 shows some trajectories launched ffdrand sym-  branches not included in chainlike structures are removed
bolic sequences of forr27) assigned to the initial points of from M, ; second, elements dfl,(CM) are put in order
the trajectories. The signs and amplitudes of theompo-  according to the amounts of imaginary parts of actions esti-
nents at each time step are well describedby)'s andv’s  mated by Eq(25); and finally, the sum is evaluated for the
of the corresponding symbols. This means that the behavioiiaitial points in chainlike structures associated with the ele-
of forward orbits launched frorivl are well approximated by ments ofM,, for which the above estimations are small.
those of homoclinic orbits. The first step is necessary due to the following reason. For

From the second fact, to each chainlike structure inorbits launched fromM,, but not from chainlike structures,
M,(CI), we assign the same symbolic sequence as the ethere is no orbit launched froM which guides them to real
ement of M, ,(CW?9) located at the center of the chainlike phase space within time steps. This means that these orbits
structure. This assignment is reasonable since, as stated hiave large imaginary parts of momenta at the time stegp
Sec. Il C, the motions of orbits launched from the chainlikethat they gain sufficiently large amounts of imaginary parts
structure are well approximated, till they start to spread ovenf actions. If the imaginary parts of actions are positively
WY, by the motion of an orbit launched from the element oflarge, the contributions from the orbits are small enough to
M. Then chainlike structures iM,, are also described by be negligible, or if they are negatively large the contributions
symbolic sequences of forii27). from the orbits are unphysical due to the Stokes phenomenon

For any trajectory launched from a single chainlike struc-[24], so that the orbits should be excluded from the whole
ture in M,,, we approximate the imaginary part of action ascandidates.
that of the trajectory launching from the elementh\df, lo- In the second step, some elements are removed Kem
cated at the center of the chainlike structure. Hence, by usinglso due to the Stokes phenomenon. Following the prescrip-
Egs. (25—-(27), the estimation of the imaginary parts of ac- tion given in Ref.[25], we found that chainlike structures
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which have unphysical contributions to wave functions, in- It is remarkable that only a small number of branches are
cluding the case of exponentially large semiclassical amplisignificant to describe the tunneling procedshs significant
tudes, are associated with the elementdviof whose sym-  branches are represented by broken curves in Fig)].2
bolic sequences include symbols of the form—«1,v) or More precisely, the numbers of branches that we need in-
(—1,1») with ve N. The justification is our future problem. creases algebraically with time stapwhile the total number

See the Discussion in Sec. IV. of chainlike structures and that of branches/ity, increase
After removing such elements froM,, we have the or-  exponentially withn. The algebraic increase of significant
dering for elements o, : orbits results from linear increases of significant chainlike

structures and of branches included in individual chainlike
structures. The former linear increase is due to the symbolic
form (31). The latter is due to the oscillating structure of real
domainW" by which the number of folding points of any
manifold initially put in real domain increases at most lin-
early with time step. In other words, the algebraic increase is
a consequence of the absence of real-domain chaos. When
; ) the real domain is chaotic, a small piece of a complex-
estimated by Eq(25) for the forward trajectory ofv,. domain manifold is, after it approached the real domain by
_ From Appendix B, it is seen thaty, which is primarily o jterations of the map, stretched and folded by real-
significant inM, for wave functions, has the symbolic se- gomain chaotic dynamics without gaining additional imagi-

Wy Wy Wy .., (28
such that the inequalities hold:
0=s(wg)<s(Wqy)<s(Wy)<-- -, (29

wheres(w,) for k=0 represents the imaginary part of action

quence nary part of action, so that the number of significant orbits
can increase exponentially with tin{&,18]. It should be
000..., (30) noted that in the integrable limit of our model, there is no
) increase in the number of branches with time. Hence in our
and the members dfw;,W,, ... Wy(n-2)}, Which are sec-  ¢ase, the algebraic increase is the reflection of nonintegrabil-
ondarily significant inM,,, have symbolic sequences of the ity.
form

The excellent agreement between both quantum and semi-
classical calculations enables us to interpret semiclassically
bbb...bbOOO.. ., (3D the features of tunneling wave functions. Figutb)&learly
shows that the contributions from many chainlike structures
where be{(1,11),(-1,—-1,1)}, and the length of reproduce the crossovers of amplitudes in reflected and trans-
bbb...bb ranges from 1 tm—2. Due to form(27), the = mitted regions. We found that erratic oscillations on each
length is bounded above bg—2, and the member of semiclassical component are due to the interferences be-

{W1,Wo, ... Wyn_2)} Which hasbbb...bb of lengthk  tween branches included in a single chainlike structure.

—2(k=n) belongs to theékth generation. Formul&25) tells  Since the length obbb...bb decides the generations of

us thats(w;) =s(W,) = - - - =S(W5(n_2)). W1,Wp, ... Wyn_p), it can be said that the crossovers of
We observed that the orbits @, wy, ... Wy, be-  amplitudes are created by the interferences between chain-

have as follows. The orbit oW, converges to the origin like structures belonging to different generations. In this way,
exponentially, so that it gains the smallest imaginary part othe complicated tunneling amplitudes are explained semi-
action. The orbits ofw,,w;, ... W,,,_7) first explore the classically by the creations of chainlike structures on the
vicinity of real phase space till the sequerdeb. . .bbter-  planeZ and by the exponential increase of the number of
minates and then converge to the origin exponentially. Suckhainlike structures with timéhough linear increase for sig-
motions yield much smaller imaginary parts of actions thamificant oney which is due to the emergence of a complex
flipping motions in complex domain, which are observed forhomoclinic tangle.
generic trajectories launched froM. The motions of ho- The semiclassical mechanism of the tunneling processes
moclinic orbits whose symbolic sequences include subsen our model is summarized as follows. Stable and unstable
quences of form(31) are investigated in Sec. lll. There it is manifolds of a real-domain unstable fixed point create a
found that such homoclinic orbits explore the vicinity of real tangle in complex domain. The initial manifold representing
phase space. The motions of the orbits ofa quantum initial state is located through the tangle, so that
W1, Wa, ... Wy_o reflect those of homoclinic orbits. the intersection points between the initial manifold and the
Figure 8a) shows quantum and semiclassical wave func-stable manifold form a hierarchical structure on the initial
tions forn=10, the latter of which is constructed by taking manifold. The orbits launched from the neighborhood of
account of the contributions from chainlike structures assoeach intersection point are guided to real phase space by the
ciated withwg, Wy, ... W55 . Both functions are in ex- stable manifold and then spread over the unstable manifold.
cellent agreement. The contributions from the other chainlikéfThe number of the orbits guided to real phase space increases
structures are much smaller than those taken account of herexponentially with time(though significant ones increase al-
Their squared amplitudes are of the orderaf0”*°at most.  gebraically, reflecting the hierarchical structure formed by
In particular, the contributions from trajectories which ex-the intersection points on the initial manifold. Then the in-
hibit flipping or oscillatory motions are negligible, as shown terferences between these orbits create complicated patterns
in Fig. 6(c). in the tunneling amplitudes.
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10° [ll. SYMBOLIC DESCRIPTION OF A COMPLEX
HOMOCLINIC TANGLE
L A. Construction of partition of phase space
o 107 Here we construct a partition of complex phase space
3 which encodes homoclinic points of the origin into symbolic
°§ 1070 sequences and defines symbolic dynamics which works ef-
= fectively. The behaviors of homoclinic orbits and the evalu-
% 107 ation of imaginary parts of actions for the orbits are pre-
= sented in Secs. Il B and Ill C, respectively.
1070 There have been extensive studies on the construction of
10725 generating partition in real phase sp&26| even in nonhy-
perbolic regimes[27]. In such real-domain studies, the
-300  -200 -100 0 100 200 300 boundaries of generating partition are roughly approximated
q by a set of folding points of flat manifolds, created by single-
10° [ 5800000 6 EYYIYY.Y N step iterations of maps. However, the extension of such

2: b650000.. 1 5. bbbALBO. working principle to complex phase space is not obvious.
103 3+ 3: 5665000 ... 1 ‘ In order to find the generating partition for our mgpve

: consider the single-step dynamics fof! for flat manifolds
of the form{(q,p) € C?|p=pgy} with pyeC. We found that

10-15.
the dynamics is well understood by relating it to the expo-
107% LN nent A(q)+iB(q) of V'(q), where A(g)=7[(Req)?
~300 4 300 —(Img)?]-Injg| and B(q)=2y(Req)(Imq)—argq [the
(c) notation is the same as in E@L8)]. The contour curves of
10-2700 . both functions are shown in Figs(&f and 1b).
lo_zsoot First, the single-step dynamics 6f ! is considered far
ool from the origin, @,p) =(0,0), and then is considered around
10729008 the origin. Far from the originA(q) andB(q) are controlled
10-3000 linearly by variabless andv:
10-4900 _ 2 2
orsom] (u,v)=((Req)*=(Imaq)°)/2,(Req)(Imq)). (32
10-5100: : On this coordinate, one obtains the estimations
10—5200. ] .
10-T100 A(q)=2yu+0O(In|u|]) (v:fixed|u]—=), (333
1o77200p B(q)=2yv+0O(In|v|) (u:fixed|v|—), (33b)
10-7300p L
e or 2yv+0(ul™") (vifixed|u[—), (330

wherey is a parameter iV(q).
In a region of phase space whéw>1, the dynamics of
f~1is discussed as follows. Wher>1, V'(q) almost van-
FIG. 6. (@ Quantum and semiclassical wave functions for ishes due to Eq33a), so that the behavior of any orbit in the
=10, represented by dotted and solid curves, respectively. Theegion is of a free motion, as shown in Figcy(the dynam-
solid one is shifted by 10to distinguish both functiongb) Indi- ics off is shown there, and that 6f * is basically the same
vidual contributions from chainlike structures to the semiclassicalyhen y<—1, a small rectangle on theufy) coordinate
wave function shown iria). The crossovers of amplitudes far from centered at §,v) with sides of lengthsAu and Av, is
the origin and near the origin are mainly reproduced by the compoz, he functioh’ roximatelv to an annul
nents displayed infbl) and (b2), respectively. For some compo- apaﬁg by t eIaLrjleCt?Withq) rggﬁ 02 ;eiy(_oza )a a::dus
nents, symbolic sequences assigned to chainlike structures are prfi/k exp:—gy(l?—FAu)]) Hence when V\?/e putpa rez:?angle with
sented, wheréb=(—1,—1,1). Each of the components 1-5 is h C o . . .
dominated by a single-orbit contribution @& 0, whose imaginary QI:IJJp—r(;]XqiTr; gtg&apllar‘itor;:g‘f?rllde Vggggg(z()), tsk:re]ci?ng;seA(;)f tlie
art of action is 26.9, 17.9, 14.3, 15.9, and 22.7, respectiely. > ’ -
0 P Y rectangle byf ~* looks like ann-fold annulus when projected

Squared amplitudes of the semiclassical componéhs which o !
come from chainlike structures associated with the elementd of On theq plane. In order to distinguish each branch of the

whose trajectories exhibit oscillatory motiofrhis). Solid and bro-  N-fold annulus, we propose the boundaries of the partition far
ken lines on the rhs represent &and Imq, respectively. Flipping ~ from the origin as the fornj(q,p) e C?Jv =vo+nm/ v}, with

or oscillatory motions in complex phase space gain large amountgg andn being a fixed real number and an arbitrary integer,
of imaginary parts of actions due to large complex momenta. respectively.
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FIG. 7. Contour curves of the functiorig) A(q) and(b) B(q).
Each curve is given, ira), by A(q)=[1+In(2y)])/2+0.4n for n
eZ and, in (b), by B(q)=an/6 for neZ with a branch—=
=<argq<. Far fromg=0, these curves are approximated by hy-
perbolic curves. In(b), a bold part in the side of Rg>0 corre-
sponds to the case @&(q)=0, and that in the other side corre-
sponds to the cases &f(q)=—#(Img>0) and#(Imq=<0). In
these bold parts, the real axis and the others interseqj=at

+1/\/2y. (c) Successive images of small pieces of a flat manifold,

{(d,p) e C?|p=py} with po=100.0+i50.0, by the mag. Contour
curves of theu component of the,v) coordinate are superposed.
For one of the piecesn,, its images are always in a region where

PHYSICAL REVIEW E 68, 056211 (2003

Around the origin, we estimate the locations of the bound-
aries by considering a set of real-domain folding points of
the flat manifolds, created by 1. For a flat manifold with
p=po e R, we define a folding point on the manifold,{p,)
by the conditiondp_4(q)/dq=0, wherep_, is thep com-
ponent off ~1(q,py). Forp, ranging from—o to +, a set
of folding points is obtained as two line$(q,p) € R?|q
==+1/\2y}. Hence the boundaries of the partition in com-
plex domain are expected to intersect the real domain around
these lines.

We propose a partition of phase space which satisfies the
rough estimations presented above both in complex and real
domains. To this end, we use the notations

U(x,y)={(q,p) e C]|xReq>0,yImg>0}, (343
B(X,y,v)=[2vxy—(3x+1)y/2], (34b)

where .y, v) is an element of defined in Eq(20). U(x,Y)
covers a single quadrant of tiggplane andB(x,y,v) always
takes an integer times. For (X,y,v) e 7, a phase-space
componentJ(x,y, ) is defined by

u(x,y,»)={(q,p)|(aq,p) e U(x,y),

[B(a)—B(x,y,»)][B(@)—B(X,y,r+1)]<0} (35
and, for ,y,»)=(0,0,0), by

uxy,v)=C>— U Uy’ ,v'). (36)
(Xl,y,Jl/)ET

Then our partition? is defined as a set of the above
phase-space componeiisee Eq.(19) for the definition of
boundaries Such definition of partition satisfies our rough
estimation for the locations of the boundaries. In fact, in the
complex domain far from the origin, due to Eq83), the
relation B(q)=B(x,y,v) leads tov~vy+nmu/y when we
setvg=—(3x+1)yw/4y andn=wvxy. Moreover, Fig. )
shows that the boundaries of indicated by B(q)
=B(x,y,v) for x,ye{+1,—1} andv=1 intersect the real

phase space af=+1/\/2y.

B. Properties of homoclinic orbits

By the partition constructed above, homoclinic points are
encoded into symbolic sequences of fo(@®). In order to
estimate imaginary parts of actions, it is necessary to under-
stand typical behaviors exhibited by the homoclinic orbits.
Here we present such typical behaviors as two observations
obtained from numerical computations. The first observation
is concerned with the relation betweenwhich is a member
of the symbol &,y,v), and the flipping amplitude of the
corresponding trajectory. The other one is concerned with the
relation between the Ilength of a consecutive part
bb...b(beS) in a symbolic sequence and the behavior of
the corresponding trajectory. These are numerical observa-
tions and we have no mathematical proof, but the phase-

us>1, so that their behavior is of a free motion. For the other onespace itinerary of any homoclinic orbit can be well explained

m,, its images expand over a wide range of phase s(@batched
region, as soon as they enter a region wherel.

by the combinations of the behaviors presented in these ob-
servations.
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Before presenting the observations, we estimate the loca- 60
tions of homoclinic points in phase space by considering

single-step folding processes of flat manifolds. betand o~ o

m; be complex planes defined bp=p; and p=p; ) B alo
(pi,pseC), respectively. The intersectionf(m;)m; o

is given by {(d,py) e C*|A(q)=—In|c/,B(q)=—argc

+2vm,v=0,1,2 ...}, whereA(q) andB(q) are the func- -60 -60

tions appearing in Eq$33), andc=(p;—p;)/(2yk). Since (b1) (b2)

the g components of the intersection points are located on a

contour curve ofA(q), they are located along the axes

Req= *Imq asymptotically asv— +o. Also, as will be 1
seen, theq components of homoclinic points are located
along these axes asymptotically as»+, wherev is a
member of the symbolxy, v).

Observation 1.Let {w;,w,,w3, ...} be a set of ho-
moclinic points whose symbolic sequences take the forms

...a sa q1.bjaja,... for wy,

...a_sa_q1.byaja,... for w,,

...a_,a q1.bzaja,... for ws,

(37

wherea, for k#0 is a member o8 defined in Eq(21), and i §
b, for ve N is given by &,y,»), with x andy being fixed -5 time step 5 -5 time step 5
members of +1,— 1}. Then the following relations hold:

FIG. 8. The trajectories of homoclinic pointa,’'s for v

: TR _ =1,2,...,5. Thdeft and right columns display the real and imagi-
lim oyl (vm) Go(w,) = (XY), (383 nary parts of the trajectories, respectively. Axe¢dn-(d) have the

v— + o
same scale. The symbolic sequences vofs take the form
; __ ...00(-1,1,1)b,(2,1,2)O0O0..., whereb,’s are given by
lim v/ w,)=—(X,Y), 38b
m VI rm)po(w,) == (x.y) (38D 11w, () (110, © (—L-1s), and(d) (L—1r). The
dotted lines represent the case that O.
lim Vy/(vm)p-1(w,)=(Xy), (380)
v— +

Similarly, go(w;) diverges much faster tham(w;) for any
otherk+#0, though not displayed here.

where Qq,Po) is the current location oW, in phase space Relation (384 leads to

andp_; is the momentum at the last time step. The rhs of
each equation denotes a pair of signs of real and imaginary
parts.

Figure 8 shows the trajectories of,’s for small v's. In
the figure, one can see two facts: First, the signs of
Reqgq(w,) and Imgq(w,) are described, respectively, by
and y in the symbolb, and second, the amplitudes of
Reqo(w,) and Imgq(w,) increase withy much faster than
the amplitudes at the other time steps. Due to the second fa
the following approximations hold for large's:

lim [Reqo(w,)/Imgo(w,)|=1. (40

v— +

In the following, we explain that the relations in E(R8)
follow, assuming that relatiof40) holds for the homoclinic

bints given by Eqs(37), and thatqg(w,) diverges much
faster thang(w,) for anyk#0 asy— + .

Po=01— o~ — o, (399 Relation (389 is explained as follows. Sinceb,
=(x,y,v), w, is included in a phase space component
P_1=0o—q_1~0o, (39b) U(x,y,v) defined in Eq.(35). Then thev component of

go(w,) in the (u,v) coordinate(32) diverges asyv— + o,
so that the sign of Reg(w,) [Im po(w,)] is opposite to that  since B(gy(w,)) diverges asv— +« due to Eq.(19), and
of Rep_1(w,) [Imp_4(w,)] for large v's. Figures 9a)— v~B(qo(w,))/(2y)~2vxym/(2y) for largev’s due to Egs.
9(c), showqg(w,), po(w,), andp_,(w,) for much larger (33) and (19). Therefore from Eq.(40) and the relation
v's. The magnitudes of the real and imaginary parts of theséReq) (Im qg) =v~vxyw/vy, we obtain  gg(w,)
quantities are shown to have the dependence of the form: \/vw/y (x,y) for large v’s.
Vvl y for sufficiently largev’s. In Fig. 9d), it is shown that Relation(38¢) is explained as follows. The classical equa-
do(w;) diverges much faster thag ;(w;) and q_,(w;). tions of motions in Eq(2) lead to the relation

056211-13



ONISHI et al. PHYSICAL REVIEW E 68, 056211 (2003

10° v y v v
(al) (a2)
3 5
S0t st :
& . - 00.4000-- | &
—_— + +Q0B1LAyA200 | —
@ - 00BLCyrA2OO
X 00 B2B1 Ay A200 - . _
10, 0, 10 10°

| Re pp(wy) |
| Im po(wy) |

| Im P—](WV) |

0.148

! @n] (d2)
~ 2
Y E
= 0
SIO‘I' +,% f L6o,
& <
o 102 . PO N T - -

1 10 102 1 - 102 103

Vv/lnw

FIG. 9. The dependences @ qo(w,), (b) po(w,), (€) p_1(w,), and(d) |gx_1(w,)/qx(w,)| for k=0,—1, on the subscript number
Axes in(a)—(c) have the same scale. The symbolic sequences,sfare given in(a), whereA,,B,, andC, denote (1,1;),(—1,1»), and
(—1,—1,v) respectively. The dotted lines i@—(c) represent/vw/y. In (a), all curves almost coincide.

do(W,) +q-2(W,)=2q9-1(W,)=V'(q-1(w,)). (41) since if it diverges to +o with (q-y(w,),p-1(W,))
being in U(a_4), then Img_4(w,) and V'(q_i(w,))
vanish, so that Ifge(w,)+q_»(w,)]=Im[2q_,(w,)

Since qo(w,) diverges much faster thag_,(w,) as v— -V'(q_-1(w,))]—0. However, this contradicts that as
+ due to our assumption, the rhs of the above relationv— +, |[Im[q(w,)+q_(W,)]|=~|Imge(w,)|~Vvaly

diverges in this limit. It means that ;(w,) also diverges as — +«. Thus theu component ofg_,(w,) diverges to—
v— +o0, since the rhs of the relation is an entire function ofasy— + . When theu component ofj_,(w,) is negatively
g_;. In particular, theu component ofy_4(w,) diverges as large,V'(q_4(w,)) is exponentially larger thag_4(w,), so
v—+o, since (q_q(w,),p_1(w,)) is always included in that go(w,)~—-V’'(g_4(w,)). This relation means that

the phase-space componeht(a_;) irrespective of v. |g_1|~ ¥ In[gq], and thusp_;(w,) has the same depen-
Furthermore, the u component diverges to —oo, dence agjp(w,) on v due to the relatiorpp_1=qo—q_1.
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Relation(38b) is explained in a similar way by considering numbers depending dm If this approximation holds, solv-

relationspy,=q;— o and Eq.(41) for qq,q;, andqs. ing V(q;(w;))=a€'’j 4, one obtains a solution
We proceed to the next observation. In usual symbolic
dynamics, a consecutive patb...b in a symbolic se- (uj(Wj),vj(Wj))Z(Z'y)_l(B Inj—In(al/k),—0), (45

quence always corresponds to a fixed point in phase space or
the motion approaching the fixed point. However, our C|aSwhere(uj(wj),vj(wj)) is the location ofyj(w;) on the (1,v)
sical dynamics always has only a single fixed point at thezoordinate. This solution suggests thatdRev;) diverges
prigin for any choice of posjtive parametétsand y, which  gpqg Img;(w;) vanishes ag— + . Moreover, according to
is easily checked by solving(q,p)=(q,p), so that the Opservation 2,g;(w;) and theq component ofU(b) are
phase-space motion corresponding to a consecutive pafcluded in the same quadrant of theplane. Therefore re-
bb...b with b#0O is not obvious. Our second observation |ation (44) is obtained. The justification of this relation needs
says that the phase-space motion corresponding to the aboigther investigation of classical dynamics, and we hope to
consecutive part has a turning point. It is conjectured that afeport the result of this issue elsewhere.
the |ength ofob...b increases, the location of the turning We have shown that there are two types of behaviors ex-
point diverges, so that the trajectory corresponding toibited by homoclinic orbits. In our numerical computations,
bb...b does not approach to any point in phase space ifhe behavior of any homoclinic orbit can be understood by
the limit of the length. the combinations of only two types of motions, one of which
Observation 2 Let {w;,wp,w3...} be a set of ho- s the flipping motions almost along the axes dRe
moclinic points whose symbolic sequences take the forms = +|m ¢, and the other of which is the motions almost along
the contour curves of the component in the,v) coordi-

.-8-pa-g.bbaaay..., forw, nate. Which type of motion occurs in the process from
(qk,Pw) to (9k+1,PKk+1) along a single homoclinic trajectory
...8-pa-1.bbbbaaa,... forwy, depends on whether the neighboring symbols in a symbolic
sequencegy anday ;, are differentthe former typé or the
.--8-28-;.bbbbbbaaja,... forws, same(the latter type The former type of motion is charac-
(42) terized by Observation 1, and the latter one by Observation
2.
where b#0O and the length ob b...b for w; is 2j (j
e N). Then the trajectory ofv; corresponding to the con- C. Evaluation of imaginary parts of actions

secutive parb b ... b is included in a phase-space compo-  The imaginary parts of actions for homoclinic orbits are
nentU(b) and the momentum almost vanishes at time steRyaluated from symbolic sequences. We first consider the
j—1. Moreover, the following inequalities hold: homoclinic points appearing in Observations 1 and 2, and the
: estimations of imaginary parts of actions for these cases are
O<Reqy-1(wj)/Reau(w;) <1 (0<k<j), (433 presented as Observations 3 and 4, respectively. Then using
the latter two observations, we estimate the imaginary part of
action for any homoclinic orbit. Observation 3 says that the
imaginary part of action diverges linearly as» +«, where
v is a member of the symbok(y,»). Observation 4 says
that the amount of the imaginary part of action is bounded
even if the length of a consecutive parb...b(beS) ina

This observation is exemplified in Fig. 10. In the caseSYmbolic sequence tends to ‘”ﬁrP“y- n pa_rticular, we ob-
where the length ob b .. .b in sequence#4?) is given by served that phase-space itineraries described by . .b
2j+1 for w;, Egs. (433 and (43b) hold in the range of 0 gain I|tt_Ie imaginary parts of actions compared.to the other
<k=<j, and Egs{(43¢ and(43d) hold in the range of <k itineraries. Thls means that the homogl|n|c orpn; appearing
<2j. In this case, the momentum(w:) at k=] is quite in Obser\(atlon 4 can play a semplassmally significant roIe..
small, but does not vanish. ! Observaﬂong 3 and 4 are also entirely based on our numeri-

We conjecture that thg component of the turning point cal computations and, so far, we have no mathematical proof

) : : for these observations.
?Aév:glzg:\éir%ilsdvsv}th the length &§b.. ... b, i.e., the follow For any homoclinic pointv, we considess(w) defined in

Eq. (24) as the imaginary part of action for the orbit wf
lim g;(w;)=(x,0), (44)  The sum in the rhs of24) is the long time limit of Im S,
J— —Lg) [for the definitions ofS, and Ly, see Eq.(8)] and
converges due to the exponential convergence of the orbit to
wherex has the sign of the infinity, which is given by the the origin. In the definition o(w), we only take account of
member of the symbdb=(x,y,v). This conjecture is based the contributions from the forward trajectories, since semi-
on the following observation. classical wave functions in our time-domain approach are
Figure 1Qc) shows that ag increasesV(q;(w;)) is ap-  determined by them. We do not consider the tégnsince it
proximated byae'’j"# where 6, «, and 8(>0) are real depends only on the choice of an incident wave packet, not

O<Imay(wj)/Imqgy_1(wj))<1 (0<k<j), (43b
0<Reqy(wj)/Reqy_1(wj)<1 (j<k<2j), (4309

O<Imay_1(wp/Ima(w)) <1 (j<k<2j). (430
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FIG. 10. (a) Trajectories ofw;’s for j=5,10,15 andb) for j=100. (c) V(q;(w;)) for j ranging from 1 to 100. The symbolic sequences
of wj's in (@)—(c) take the form ...00.bb ... bOO ..., where the length ob b .. .b is 2j. The types ob used in(a) and in the
others are given, respectively, @2 and in(b). In (a), amplitudes of R@ and Imp almost vanish at time stgp-1. In (b), bold curves are
the boundaries of our partition. For the discussion in Sec. Il C, trajectories for an integrable limit are sup@iptisdc¢turves which have
null energy and connect two infinities of tgolane (Rey,Im q) = (+«,0) and (0;+ ). The dotted line sprouting from the origin represents
an axis Regy=Img. In (c), the phase-2y(Req;)(Im g;) is plotted without taking mod 2.

on classical dynamics. First, we estimagv) for the ho-
moclinic points appearing in Observation 1.

Observation 3 Let {w;,w,,w3, ...} be a set of ho-
moclinic points which appears in Observation 1. Then forgf
any integem=1, the following relation holds:

Ai+ 1 (W) [A- k+1)(W;) ] by the mapf ~! (f), so that the as-

sumption fork=2 is expected to be valid.

We first discuss the kinetic part and then the potential part
s(f""™(w,)), respectively. In the kinetic part,

S 1 ImT(pe—1(w,)), each term is written as

lim [y/(2va)]s(f~"(w,))=xy.

v— +o

(46)
IMm T(py-1(W,)) =[Repr—1(W,) I[IM py_1(W,)]. (47)

_ - Due to the assumptions we put, the following inequalities
Figure 11a) shows the dependence |s{f "(w,))| onv. It hold for k+0,—1 and for largev's:

can be seen thds(f ""(w,))|~2vw/y for large v’s. The

conditionn=1 is necessary, since it is essential to relation |Repy(w,)|<|Rep_;1(w,)|,|Repo(w,)|, (483
(46) to take account of the contributions from the flipping
motions fromq_4(w,) to gqo(w,) displayed in Fig. 8.

" > [Im p(w,)| <[Imp_y(w,)],[Impo(w,)|. (48D

In the following, we explain relatioif46), assuming that
Observation 1 holds, and that for the homoclinic points ap-
pearing in Observation 1g,(w,) [q_«(w,)] for k=0 di- Then the kinetic part os(f "(w,)) is dominated by the
verges much faster thagy,;(w,) [d-k+1)(W,)] as v— terms ImT(p_;(w,)) and ImT(pg(w,)) due to Eq.(47).
+. Figure 9d) suggests that the second assumption isSince Observation 1 says that the quantities in the rhs of the
valid for k=0 and 1. For the othe¢’s, it has not been found above inequalities are proportional te? for large v's,
numerically whether the assumption is valid or not, sincelm T(p_;(w,)) and ImT(py(w,)) have linear dependences
qu(w,) andq_,(w,) for k=2 remain to be immediate val- on larger’s. Hence the kinetic part o§(f "(w,)) is ex-
ues even forv=~1000, so that the numerical computation pected to have a linear dependence on large Figure 11
needs too high accuracy to make clear the asymptotic behaghows that the kinetic part af(f ~"(w,)) is actually domi-
iors of |g.x(w,)| with sufficiently large magnitudes. nated by InTT(p_;(w,)) and ImT(po(w,)), and has a linear
However, the exponential dependenceVdéfq) on u andv dependence on larges.
shown in EQgs.(33) means that the large difference in +In the potential part of s(f "(w,)),

ak(wj)[a_x(wj)] results from the slight difference in X, ,1lmV(qg(w,)), each term is written as

i.e.,
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107 Y T (2) and a relationV’' (q) = —2yqV(q) satisfied by ouv(q).
Simple arithmetic of the rhs of E¢49) yields the inequality

108

| sCF™wp)) |

|qk+l(Wl/)| + |qkfl(Wv)|

[ImV(q(w,))|< 2y|qu(w,)]

10° (50)

10 Based on the assumptions imposed here, we can develop
the same argument as that just below E) (note that the

P
oo
ot

10°E assumptions here are stronger than those imposed) there

) . - 000.4y 000 a result, one obtains that |g.(w,)],|q-1(W,)]
10 + - 000BLA,A2000 " ~ [y~ tIn[ge(w,)] for large v’s. In a similar way, one obtains

o LnlAa () )

10 b @ ---000Bi.C/ A2000 - that|q ks 1)(W,) |~ vy~ Ina.(w, )] for k=1 and largev's.

X ---000B2B1.AyA2000 -~ By using these relations, the rhs of E§0) is approximated
1 A 'l by

[29%g(Jaw(w,))]™*  for k=0, (51a

9(ldk-1(w,)|) for k>0, (51b)

9(lak+a(w,)|)  for k<0, (519

whereg(x)=x/(2\yInx). Here we used an approximation

|al+ 'y~ *In[g]~]q] for largeq].
Since|qq(w,)|~ V2vw/y for large v's according to Ob-
servation 1, the rhs of Eq50) is approximated by

[2¥%9(\2vwly)]™t for k=0, (52a
T ¥ g(v2vmly) for k==1, (52b)

g(VIn'{In'[ ... I (2mvly) ...]}) for |k|=2,
(520

where Iix=(2y) Ynx, and the argument of the square root
in Eq. (520 is a|k|—1 fold logarithm of 27/ .

Since g(x) in Eq. (52 is monotonically increasing for
largex, one can expect that the potential parts¢f~"(w,))
for large v's is dominated by the terms IW(q_4(w,)) and
ImV(g.(w,)). More precisely, from Eq(52b), the potential
part of s(f "(w,)) is expected to be approximated by

| Tm V(go(w )| 29(\2vmly) for large v's. Also, from Eq. (52a,
ANk > 3 ImV(go(w,)) is expected to vanish as— +o0. Figure 11
1 10 10 10 shows that the potential part eff ~"(w,)) is actually domi-

v nated by the terms IM(q_;(w,)) and ImV(q,(w,)) for

FIG. 11. (a) |s(f "(w,))| for n=4 andv=1-1000. The sym- large v's, and the asymptotic behavior of the potential part
bolic sequences aof/,’s are the same as in Fig. 9. The dotted line for large v’s is described by g(+/2vw/y). It is also shown
represents 2m/y. Axes in (a)—(c) have the same scaléy) The  that ImV(qy(w,)) tends to vanish as increases.
absolute values of the kinetic parts and the potential ones of Since the ratios of the terms in Etp2) to v vanish as
s(f""(w,)). The upper dotted line and the lower dotted curve y + oo, s(f~™(w,)) for large v's is dominated by the ki-
represent 2w/y and 2y(V2vwly), respectively, where netic part. Therefore the following estimation is finally ob-
g(x)=x/(2yyInx).  (©  [ImT(p_y(w,))+ImT(po(W,)I.  tained for largev’s:
|Im V(q_3(w,))+ImV(a;(w,))], and [ImV(qo(w,))|. The top
dotted line and middle dotted curve are the same d)imnd the s(f~"(w,))=ImT(p_1(w,))+ImT(po(w,))
bottom dotted curve represeridy?g(\2va/y)] L.

=[Rep_i(w,)][Imp_4(w,)]+[Repo(w,)]

X[Im po(w,)]

(49) ~(2vml y)Xy. (53

Qk+ l(WV) - qu(wv) + k- l(WV)
2y0(w,)

ImV(q(w,))=Im

by incorporating a relatiop,=p,_;—V'(gy) given by Eq. In the last approximation, the relations in E§8) are used.
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3000 with null energy. It can be seen that the homoclinic trajecto-
mmm:.__l ries are along the integrable trajectories for the duration of

2500 b=1(1,1,3) itineraries described b b. . .b. In fact, we observed that
H(ak(w;j),pk—1(w;)) almost vanish fok’s corresponding to
~ 2000 the duration. Hence the members of sequeftek can be
E‘ evaluated by using the integrable trajectories. Since the
% 1500 - imaginary parts of actions of the integrable trajectories are
< b=(,1,2) bounded(see Appendix ¢ sequencé54) is expected to be
1000 bounded.
By making use of Observations 3 and 4, we estinséte)
500 ey for any homoclinic pointv, which has a symbolic sequence
b=(1,11) of form (22). We denotea,= (X, ,Yk,vx) for any k and as-
0 sume thaty, is large if a,# O. Then two cases have to be
0 20 40 i 60 80 100 discussed.

First is the case where the symbolic sequence afoes
FIG. 12. s(f~"(w;)) for n=4 and j=1-100. The symbolic not include a consecutive pati,b...b. For any integek
sequences of/;'s are the same as in Fig. @). Solid lines indicate  and fora,# O, we approximateg,(w) according to Obser-

s(f~"(w)) for w's which have sequences of for(®5). vation 1 by

Next we estimates(w) for the homoclinic points appear- A(W) = (viemr! ) YA X, Vi) - (58
ing in the Observation 2. ) ] )

Observation 4 Let {w;,w,,Ws, ...} be a set of ho- Fora.=0, we approximate(w) by (0,0). This approxi-
moclinic points which appears in Observation 2. Then forMation is equivalent to substituting(,y\)=(0,0) into Eq.

any integem, the following sequence is bounded: (58). From the relationpy_;=0x—dx-1, Pxk-1(W) is ap-
proximated by
s(f™"(wq))s(f~"(wp))s(f"(wg)) . . .. (54
Pr—1(W)
. g .
Figure 12 shows the dependences¢f "(w;)) onj. In () YA = o1 My 2=y 1y V).

the case of this figure, sequen@&) does not deviate largely
from s(f ~"(w)) for a homoclinic poinw which has the sym- (59

bolic sequence
Then due to Eq(47), ImT(py_1(w)) is approximated by
...00.b0O.... (55

1M T(py— 1 (W)=~ (7] ¥) (Xievi P = X— 17~ 1"2)
This means that each element in sequeidée is dominated 12 112
by the contributions from the flipping motions between com- XYk = Yh-1Vk-1 - (60)
ponentsU (b) andU(O). Though not displayed here, when

. Since the imaginary part of action gained at each time step is
wj's have symbolic sequences of the form ginary p 9 P

dominated by the kinetic part, as discussed below Observa-
(56) tion 3,s(w) is estimated by the sum over the terms in the rhs
of Eq. (60) for k=1.

we observed that sequen(®)) does not deviate greatly from  The second is the case where the symbolic sequenae of

...a_sa 1.bb...baga;...,

the action for the case includes a consecutive paki,b .. .b. The imaginary part of
action gained along the itinerary described by . . .b is
...a_,a_qy.baja;.... (570  negligible compared to that along the other part of the tra-

Hence the imaginary parts of actions are mainiy gained b;ectory, as discussed below Observation 4. From this faCt, we
phase-space itineraries described by sequences other thapProximate the imaginary part of action for the trajectory of
bb...b. This means that itineraries describedtbyp .. .b b b...bbyanullvalue. This approximation is equivalent to
can be semiclassically significant in the tunneling processe8valuating the imaginary part of action only by its kinetic
since smaller imaginary parts of actions yield larger semifart and then substitutingx¢-1,Yx—1,vk-1) = (X, Yk, V&)
classical amplitudes. As in Observation 2, the same statddto Eq. (60).
ment as Observation 4 holds when the length of the sequence As a result, whether a consecutive parb...b is in-
bb...bis given by 3+1 forw, . cluded in the symbolic sequence or not, the imaginary part of

We discuss why sequen¢g4) is bounded. Remembering action is estimated only by its kinetic part
the discussion leading to conjectui4), one can see that
H(a;(w;),p;-1(w;))~0 for H(q,p)=T(p)+V(q) and for
large j’s, sinceT(p;_1(w;))~0 due to Observation 2, and
V(dj(w;))=0 [henceV(q;_1(w;))=~0] as shown in Fig.
10(c). Figure 1@b) shows homoclinic trajectories of our map Hence substituting Eq60) into the rhs of the above, we
and trajectories for the integrable flow Hamiltonigliq, p) finally obtain estimation25).

+ oo

s<w>~k§l Im T(py—1(W)). (61)
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creates chaotic dynamics in complex domain. Although clas-
3000 (a) N Vlfg sical motions in real phase space are simple, tunneling wave
vi=3 ve- / functions exhibit a complicated pattern, which is typically
observed in chaotic systems. The wave functions were repro-
~ 2000 duced semiclassically in excellent agreement with fully
3 v1=2 guantum calculations. It enables us to interpret the creation
“ of the complicated pattern appearing in the tunneling regime.
1000 Complex orbits contributing to the semiclassical wave func-
tions are embedded in the hierarchical structure of initial-
1=l =1 value sets. The hierarchical structure is a reflection of the
0 v2=1 emergence of a homoclinic tangle in complex phase-space,
0 al alaz alaza3s i.e., the manifestation of complex-domain chaos, and pro-
5000 vides the mechanism: the interferences of orbits over genera-
tions. On the basis of symbolic dynamics constructed in the
4000 complex domain, phase-space itineraries of tunneling orbits
were related with the amounts of imaginary parts of actions
gained by the orbits. Incorporation of symbolic dynamics
’§3°°° [ with the complex semiclassical method has enabled us to
~ discuss gquantitatively the competition among tunneling or-
2000 bits and has elucidated the significant role of complex-
domain chaos in the tunneling processes of nonintegrable
1000 systems.
0 B. Chaotic tunneling
0 at aiaz aiazas We further discuss the role of complex-domain chaos

FIG. 13. Imaginary parts of actions evaluated fréah actual played in the semiclassical description of tunneling processes
trajectories of homoclinic points angh) symbolic sequences as- I Nonintegrable systems. In the present study, we adopted a
signed to the homoclinic points. In each figure, the origin representime-domain approach of the complex semiclassical method.
a null imaginary part of action gained by the fixed poin, [{) This approach is concerned with the real-time classical
=(0,0), associated with a symbolic sequence Propagation and has nothing to do with the instanton pro-
...00.000.... Thefirst to the third columns labeled tay , cesses. This means that real-domain paths are not connected
a,a,, anda,a,a; show the imaginary parts of actions gained by theto complex-domain paths, in other words, both the real do-
trajectories of the homoclinic points associated, respectively, wittmain and the other domain are invariant under the classical

...00.000400..., ...00.00044a,00..., dynamics. Therefore all candidate orbits to describe tunnel-
and ..00.00044a,a;00..., where a;,a,,az ing processes are always exposed to complex-domain chaos,
e{(1,1y)|v=1,2,3. not to real-domain one. In this sense, it is natural to consider

Figure 13 shows the imaginary pars of actons evauatel %% LS SOTexdoman race ot coproech,
from actual trajectories of homoclinic points and from sym- ; - \ o . al g
bolic sequences assigned to the homoclinic points. Estimaiales are identified W'th classical ma_mfolds_ in comple_x
tion (61) is based on the assumption that is large if a, phase space. The evolution of the manifolds is involved in
+0, however, as shown in the figure, the estimation is stijthe stretching and folding dynamics in the complex domain.
valid for smallv,’s. This is because the approximation in Eq. The hierarchical arrangements of initial values which we ob-
(58) is not so crude for small’s, as is shown in Fig. @). served is nothing but the structure of the section of one back-
In each column of Fig. 1@), the smalless(w) is associ- ward evolved manifold ~"(F) cut by the other manifold.
ated with a symbolic sequence .0.0.00... or Our result here strongly suggests that the creation of the
...00.000bb...b0O... with b=(1,1,1). Ap- hierarchical structure of initial-value sets is only due to the
pendix B shows such types of symbolic sequences, includin§mergence of complex-domain chaos, irrespective of the ex-
the case wheré=(—1,—1,1), attain the smallest(w) in iIstence of real-domain chaos and also irrespective of the
the whole candidates. In Sec. Il F, we evaluated the tunnelinf/Pes of tunneling, i.e., whether energy-barrier tunneling or
wave functions by the semiclassical candidate orbits de@ynamical ond28l. .
scribed by these types of sequences, typical behavior of The chaotic dynamics in phase space is created on the

which was illustrated in Fig. (8). Julia set, which includes the complex homoclinic tangle in-
vestigated here. The trajectories in this set are proved to be
IV. CONCLUSION AND DISCUSSION sufficient to describe tunneling in the case of the complex

Henon map[18]. It was numerically confirmed here that this

statement is correct also in our case. Therefore, on the basis
We have carried out complex semiclassical analysis foof our present study and R¢fl8], we would like to present

the tunneling problem of a kicked scattering model whichthe notion of “chaotic tunneling,” which first appeared in

A. Conclusion
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Ref.[5], as the tunneling in the presence of the Julia set. the Stokes phenomenon. The justification of our empirical
In energy-domain approachgs,7,13,14, to the best of rule mentioned above needs the consideration of the intersec-

our knowledge, the complex-domain chaos has not been usgidn problem of the Stokes curves, and we are now investi-

explicitly in semiclassical calculations. The significant role gating this issue.

of the complex domain chaos played in the time-domain ap- (3) In many nonintegrable open systems with the condi-

proach should have the correspondence in the energy-domdiion that V'(q)—0 as|g|— +, real-domain trajectories

ones. However, the instanton concept, which is intrinsic towhich diverge to infinity are indifferent, i.e., have null

these approaches, makes it difficult to see such correspohyapunov exponents, in contrast to the case of open systems

dence. The reason is that even when one takes full account ofith polynomial potential functions. Because of that, in the

complex classical dynamics, the degree of freedom of théormer systems, generic properties of complex trajectories

path deformation on the complex time plane often allows onexploring in the vicinity of real-domain asymptotic region

to consider complicated classical processes in complex dare not obvious, in spite of their semiclassical significant role

main as the composition of real-domain chaotic processeas has been seen in our present study. The result of the in-

and instantonlike on€¥,13]. The authors of Ref13] have  vestigation of this issue will be reported elsewhere.

reported complicated patterns of stationary wave functions

and explained them in terms of stable and unstable mani- ACKNOWLEDGMENT

folds. This implies that both manifolds are the key objects to

relate time-domain and energy-domain approaches. We One of the authorsT.O) is grateful to A. Tanaka for

would like to describe the tunneling phenomena in nonintestimulating discussions.

grable systems in terms of the simple notion, chaotic tunnel-

ing. Therefore the role of complex-domain chaos in the

energy-domain approaches is desired to be clarified in furthetAPPENDIX A: NO CHAOTIC MOTION FOUND IN REAL

studies. DOMAIN

We prove that Eq(2) has no chaotic solution iii? when
) o V(q) is unimodal, i.e.,—V'(q)>0,<0, and=0 for g>0,
Finally, we itemize several future problems to make our—g ang=0, respectively. More precise statement is that for
theory more self-contained, given as follows. _unimodal V(q) and any @,p) € R, if the forward (back-

(1) We have constructed a partition of phase space 'r\1/vard) orbit of (q,p) is bounded, then the forwartback-

terms of the phase part of the gradient of a potential functlon\.Nam) orbit is either fixed at (0,0) or approaching (0,0).

A similar approach can be found in the context of the study "~ _~ ~ " : .
on a dynamical system of an exponential map of one com- First, it is shown that any point except (0,0) diverges by

plex variable 29], where the boundaries of a partition corre- lorward or backward iterations of the mépit is trivial that
spond to the contour curves of the phase part of the expd-d-P)=(0,0) is a solution of Eq(2). Assume that a solution,
nential function. Genericness of our approach should bé(dj.Pj)j €2}, satisfiesqopo>0. A relation q,=do+ po
examined in further studies. immediately leads us te|q,>0 and|q;|>|do|. Another
(2) Reproducing tunneling wave functions, we did notrelation p;=po—V’(q1) and the unimodality condition
enter into details of the treatment of the Stokes phenomenon-ad:V'(q;)>0 for g;#0 lead us topyp;>0 and |p,|
Empirically, symbolic sequences which include members of>|po|. Then applying the discussion recursively, we obtain
the form (1-1,) or (—1,1v) with ve N should be ex- that|q;|(=[qo+po+---+pj_1|) diverges ag—+=. In a
cluded from the whole candidates. In particular, according teimilar way, in the case that|gp,<0, we obtain that
such empirical rule, we have excluded from the candidatefy_j|(=[qo—p-1—---—p—j|) diverges ag— +, though
those trajectories which have almost null imaginary parts obne has to solve Eq2) backwardly. Whenqypo=0 and
actions due to the cancellation between the imaginary partey,po) # (0,0), eitherg;p,#0 org_,p_,#0 holds, so that
gained at individual time steps. When the conditign., ~ the same discussion can be applied.
=qk_,_, is satisfied for ank=0 with n being fixed, where Second, it is shown that for any point except (0,0), if its
the asterisk denotes the complex conjugate, the imaginaf@rward or backward orbit is bounded, then the orbit ap-
parts of actions integrated over the whole time axis becomgroaches (0,0). We only prove the case of forwardly
null. We observed numerically that such condition is satisfiedbounded orbits, since the case of backwardly bounded ones
by the symbolic sequences of homoclinic points suchs straightforward. Assume that a forward trajectory,
that the relation between symbolsX,(i,Ynik ¥nsk)  1(0j.Pj)|i €N}, is included inB, a compact set i2. Then
=(Xp-k-1—Yn-k-1,Yn-k-1), holds for anyk=0 with n  there exists an accumulation valug,(,p,) in B for the
being fixed. In fact, there is an infinite number of symbolic trajectory. By definitionf!(q, ,p,) for anyjeZ is also an
sequences satisfying such relation. The criterion for whetheaccumulation value. Sincg(q;,p;)|j € N}CB, we obtain
tunneling orbits well approximated by the homoclinic orbits that {f!(q, ,p,)|j € Z}CB. Any orbit both forwardly and
described by such symbolic sequences are semiclassicalbackwardly bounded must be (0,0) due to our former discus-
contributable or not would be beyond our intuitive expecta-sion. Hence the fixed point (0,0) is the only accumulation
tion based on the amount of imaginary parts of acti®®.  value, so that the orbit ofgy,pg) approaches (0,0). So the
The criterion should be given only by a rigorous treatment ofstatement has been proved.

C. Discussion
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APPENDIX B: ORDER OF SYMBOLIC SEQUENCES

Here the order of symbolic sequences is given accordin
to the amounts of imaginary parts of actions estimated by Eq.

(25). Let us consider a set of symbolic sequentes

S={apa;...a,00...|n=0,a,e8’,k=0},
(Bla)

S'={(1,1p),(—1,—1v)|ve NJU{O}. (B1b)

For anyo,o' €2, we define an equivalent relation by

o~o'&s(a)=s(a), (B2)

wheres(o) denotes the value of the rhs of E2f) evaluated
for o. For any two members ot/~, [o] and[c'], the
order between them is defined by

[o]<[co']&S(0)<s(a”). (B3)
It is easily checked thas(c)=0 for any e3> and the
equality holds if and only iflc=0 O O. ... Then one ob-
tains

[000...]<[¢]©c+000.... (B4)

For any[o] except[O O O...], the representativer
can be chosen such that

o=apa;...a,00... (n=0), (B5a)
a,70, a_#ay (1<k=n). (B5b)
For o in Eqg. (B5), the following relations hold:
[2,00...]<[ay-18,00...]
<......
<[apa;...a,00...]1=[0]. (B6)
Since, for anyve N,
S((1,1»)00...)=5(-1,-1»)00...)
<s(-1,-1r+1)00...)
=5(1,1y+1)00...), (B?)
one of the following relations holds:
[(1,1,)00...|<[a], (B8a)
[(1,1,)00...]=[0o]. (B8h)

Finally, from Eqs.(B4) and(B8), one obtains the relations

[000...]1<[(1,1,)00...]<[c] (B9

PHYSICAL REVIEW E 68, 056211 (2003

forany[o] excepfO O O...]and[(1,1,1)O0...]. Itis

Sot difficult to check thaf(1,1,1)0 O...] is equal to

{bb...b0O...|b=(1,11) or (—1-1,1)}.
(B10)

APPENDIX C: IMAGINARY PARTS OF ACTIONS FOR
INTEGRABLE TRAJECTORIES

We consider a Hamiltoniatd(qg,p)=T(p) +V(q) with
T(p)=p?2 and V(q)=kexp(—yq?), and evaluate the
imaginary parts of actions for the trajectories which satisfy
H(q,p)=0 and connect two infinities of they plane
(Req,Imq)=(+«,0) and (O+=). These trajectories are
included in the first quadrant of thegplane as shown in Fig.
10(b). There are symmetric counterparts of the trajectories in
the other quadrants, and the application of the result here to
these is straightforward.

From the conditionH(qg,p)=0, one obtainsp(q)=

+i\2ke "2, Then the actior§(q,q’) defined by

' d
sa.a)- [T v )
q p
can be written as
S(0,q')==*i @fq’efyqz’qu (C2)
q

Let | be one of the integrable trajectories projected on the
g plane andg,=(x,x) be the intersection point betweén
and the axis Rgq=Imgq. Denoting q,=(0,0) and q.,
=(+,0), and deforming an integral pat§(qo,q..) is rep-
resented as

S(do+9) =S(do,Ax) + S0, Gxe), (C3

whereS(qq,9,) andS(qy,q.) are integrated along the axis
Reg=Imq and the path, respectively. One immediately
obtains that

S(do,9-) = *ia, (C4a
S(Go,0x) =+ af[—C(y) +S(Y)]+iI[C(y) + S(Y) ]},
(C4b)

where a=\/wkly, y=+2vyl7x, and C(y), and S(y) are
defined by[}cos@@t?/2)dt and [¥sin(mt¥2)dt, respectively
(Fresnel's functions From Eqgs.(C3) and(C4), one obtains

Im S(ay,0.) =+ a[1-C(y) —S(y)].

For our parameter valuds=500 andy=0.005, the tra-
jectory | satisfiesy>1.0. Since 0.&[C(y)+S(y)]<1.4in
this range ofy, one obtains that

(CH

2[Im S(a,0..) | < 450. (C6)

In particular, ImS(qgy,d.) vanishes ag— +o°, sinceC(y)
and S(y) converge to 1/2 in this limit.
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