66 research outputs found

    Optical Absorption and Raman Spectroscopy Study of the Fluorinated Double-Wall Carbon Nanotubes

    Get PDF
    Double-wall carbon nanotube (DWNT) samples have been fluorinated at room temperature with varied concentration of a fluorinating agent BrF3. Content of the products estimated from X-ray photoelectron data was equal to CF0.20 and CF0.29 in the case of deficit and excess of BrF3. Raman spectroscopy showed considerable decrease of carbon nanotube amount in the fluorinated samples. Analysis of optical absorption spectra measured for pristine and fluorinated DWNT samples revealed a selectivity of carbon nanotube fluorination. Nanotubes with large chiral angle are more inert to the fluorinating agent used

    Electronic Structure of Nitrogen- and Phosphorus-Doped Graphenes Grown by Chemical Vapor Deposition Method

    Get PDF
    Heteroatom doping is a widely used method for the modification of the electronic and chemical properties of graphene. A low-pressure chemical vapor deposition technique (CVD) is used here to grow pure, nitrogen-doped and phosphorous-doped few-layer graphene films from methane, acetonitrile and methane-phosphine mixture, respectively. The electronic structure of the films transferred onto SiO2/Si wafers by wet etching of copper substrates is studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy using a synchrotron radiation source. Annealing in an ultra-high vacuum at ca. 773 K allows for the removal of impurities formed on the surface of films during the synthesis and transfer procedure and changes the chemical state of nitrogen in nitrogen-doped graphene. Core level XPS spectra detect a low n-type doping of graphene film when nitrogen or phosphorous atoms are incorporated in the lattice. The electrical sheet resistance increases in the order: graphene < P-graphene < N-graphene. This tendency is related to the density of defects evaluated from the ratio of intensities of Raman peaks, valence band XPS and NEXAFS spectroscopy data. View Full-Tex

    Genome resource banking in the family Felidae

    Get PDF
    Many of the extant Felidae species are endangered or vulnerable. Others being not endangered as a whole species contain endangered subspecies. Only a very few cat species, besides domestic cats, are not in the risk group. Cryopreservation of embryos and gametes is a modern approach for ex situ mammalian genetic resources conservation. Freezing of semen has been successfully applied to the domestic cat and to more than 25 wild members of this family. However, embryos/oocytes cryopreservation was successful for only a small number of felids. Domestic cat and four wild Felidae species produced offspring after cryopreservation and subsequent embryo transfer. Regarding freezing of oocytes, so far different cryopreservation methods are still being experimentally tried exclusively for domestic cat. Genome Resource Bank (GRB) containing frozen semen of Amur leopard cat, bobcat and Eurasian lynx was established at the Institute of Cytology and Genetics, Novosibirsk. As a result of this project, original methods of feline semen freezing have been developed; embryos of domestic cat have been successfully frozen as well. Approaches to freeze domestic cat’s oocytes have also been tried. During this work, we combined biological and physical methods. In particular, the process of freezing embryos and oocytes was monitored with Raman spectroscopy. Different methods of frozen-thawed spermatozoa and embryonic viability testing were used in this study, including vital staining and subsequent fluorescent and light microscopy, and heterologous in vitro fertilization

    Effects of a high-fat diet on the lipid profile of oocytes in mice

    Get PDF
    There are evidences that obese women exhibit a detrimental oocyte quality. However, it remains unclear how this change is associated with obesity, indirectly – or directly through a change in the content and/or composition of lipids in oocytes. The aim of this work was to study effects of a high-fat diet applied to female donor mice on the amount and qualitative composition of lipids of immature and in vivo matured oocytes. A high-fat diet caused larger body weight in female mice compared with the control (p &lt; 0.001; 44.77±1.46 and 35.22±1.57, respectively), and increased the blood levels of cholesterol (p &lt; 0.05; 2.06±0.10 and 1.78±0.10, respectively) and triglycerides (p &lt; 0.05; 2.13±0.23 and 1.49±0.21, respectively). At the same time, this diet does not affect the level of unsaturation of lipids in immature (0.207±0.004 in the experiment and 0.206±0.002 in the control) and matured oocytes (0.212±0.005 in the experiment and 0.211±0.003 in the control). Total lipid content increased during in vivo maturation of mouse oocytes. The amount of lipids was greater in mature oocytes in the experimental group compared to the control (p &lt; 0.01; 8.15±0.37 and 5.83±0.14, respectively). An increase in intracellular lipid amount during oocyte maturation was revealed both after a standard diet (p &lt; 0.05; 4.72±0.48 and 5.83±0.14, respectively) and after a fat-rich diet (p &lt; 0.001; 3.45±0.62 and 8.15±0.37, respectively). Thus, during in vivo oocyte maturation in mice the content of intracellular lipids enhanced, the high-fat diet aggravated this dynamics of lipid increase during in vivo maturation of oocytes

    Alterations in the social-conditioned place preference and density of dopaminergic neurons in the ventral tegmental area in Clsnt2-KO mice

    Get PDF
    The incidence of autistic spectrum disorders (ASD) constantly increases in the world. Studying the mechanisms underlying ASD as well as searching for new therapeutic targets are crucial tasks. Many researchers agree that autism is a neurodevelopmental disorder. Clstn2-KO mouse strain with a knockout of calsyntenin 2 gene (Clstn2) is model for investigating ASD. This study aims to evaluate the social-conditioned place preference as well as density of dopaminergic (DA) neurons in the ventral tegmental area (VTA), which belongs to the brain reward system, in the males of the Clstn2-KO strain using wild type C57BL/6J males as controls. Social-conditioned place preference test evaluates a reward-dependent component of social behavior. The results of this test revealed differences between the Clstn2-KO and the control males, as the former did not value socializing with the familiar partner, spending equal time in the isolationand socializing-associated compartments. The Clstn2-KO group entered both compartments more frequently, but spent less time in the socializingassociated compartment compared to the controls. By contrast, the control males of the C57BL/6J strain spent more time in socializing-associated compartment and less time in the compartment that was associated with loneness. At the same time, an increased number of DA and possibly GABA neurons labeled with antibodies against the type 2 dopamine receptor as well as against tyrosine hydroxylase were detected in the VTA of the Clstn2-KO mice. Thus, a change in social-conditioned place preference in Clstn2-KO mice as well as a higher number of neurons expressing type 2 dopamine receptors and tyrosine hydroxylase in the VTA, the key structure of the mesolimbic dopaminergic pathway, were observed

    Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes.

    Get PDF
    Thermal decomposition of Co-doped calcium tartrate in an inert atmosphere or air was studied using thermogravimetric analysis and X-ray absorption fine structure (XAFS) spectroscopy. It was shown that the powder substance containing 4 at.% of cobalt completely decomposes within 650-730 °C, depending on the environment, and the formation of Co clusters does not proceed before 470 °C. The products of decomposition were characterized by transmission electron microscopy, XAFS, and X-ray photoelectron spectroscopy. Surfaceoxidized Co metal nanoparticles as large as ∼5.6 ( 1.2 nm were found to form in an inert atmosphere, while the annealing in air led to a wide distribution of diameters of the nanoparticles, with the largest nanoparticles (30-50 nm) mainly present as a Co3O4 phase. It was found that the former nanoparticles catalyze the growth of CNTs from alcohol while a reducing atmosphere is required for activation of the latter nanoparticles. We propose the scheme of formation of CaO-supported catalyst from Co-doped tartrate, depending on the thermal decomposition conditions

    Bromination of double-walled carbon nanotubes

    Get PDF
    Double-walled carbon nanotubes (DWCNTs) synthesized by catalytic chemical vapor deposition (CCVD) have been functionalized by bromine vapor at room temperature. At least two different bromine species were detected in the product using X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis. The primary form is negatively charged Br2 molecules exhibiting an intense resonance at ∼238 cm−1 in the Raman spectrum. The electron transfer from the nanotubes to the adsorbed molecules is detected from C 1s XPS and near-edge X-ray absorption fine structure spectra. The optical absorption spectra reveal that although the metallic nanotubes are more reactive to Br2, the outer semiconducting nanotubes also readily interact with Br2 adsorbates. The secondary bromine form is attributed to covalent C-Br bonding, and its possible sources are discussed in the light of quantum-chemical calculations. Analysis of the XPS, Raman, and optical absorption spectra of the Br-DWCNTs annealed at 100-170 ° C indicates preservation of a part of bromine molecules in samples that affects the electronic and vibration properties of nanotubes

    Revealing distortion of carbon nanotube walls via angle-resolved Xray spectroscopy

    No full text
    Arrays of aligned single-walled carbon nanotubes (SWCNTs) produced by supergrowth method were studied by scanning electron microscopy (SEM) and angle-resolved near-edge X-ray absorption fine structure spectroscopy, which defined that nanotube disorder is 10e13 and 23e27, respectively. The latter value was confirmed by X-ray fluorescent spectroscopy. The difference in the obtained angular deviations was attributed to distortion of the SWCNT walls, because the X-ray spectroscopy methods are sensitive to a local environment of probing atoms, while the SEM examines the nanotubes at a substantially larger length scale. Significant distortion (20e24) of SWCNT walls could be related to the defects introduced during the growth process
    corecore