794 research outputs found

    The Distribution of High Redshift Galaxy Colors: Line of Sight Variations in Neutral Hydrogen Absorption

    Get PDF
    We model, via Monte Carlo simulations, the distribution of observed U-B, B-V, V-I galaxy colors in the range 1.75<z<5 caused by variations in the line-of-sight opacity due to neutral hydrogen (HI). We also include HI internal to the source galaxies. Even without internal HI absorption, comparison of the distribution of simulated colors to the analytic approximations of Madau (1995) and Madau et al (1996) reveals systematically different mean colors and scatter. Differences arise in part because we use more realistic distributions of column densities and Doppler parameters. However, there are also mathematical problems of applying mean and standard deviation opacities, and such application yields unphysical results. These problems are corrected using our Monte Carlo approach. Including HI absorption internal to the galaxies generaly diminishes the scatter in the observed colors at a given redshift, but for redshifts of interest this diminution only occurs in the colors using the bluest band-pass. Internal column densities < 10^17 cm^2 do not effect the observed colors, while column densities > 10^18 cm^2 yield a limiting distribution of high redshift galaxy colors. As one application of our analysis, we consider the sample completeness as a function of redshift for a single spectral energy distribution (SED) given the multi-color selection boundaries for the Hubble Deep Field proposed by Madau et al (1996). We argue that the only correct procedure for estimating the z>3 galaxy luminosity function from color-selected samples is to measure the (observed) distribution of redshifts and intrinsic SED types, and then consider the variation in color for each SED and redshift. A similar argument applies to the estimation of the luminosity function of color-selected, high redshift QSOs.Comment: accepted for publication in ApJ; 25 pages text, 14 embedded figure

    Bringing care to the community: expanding access to health care in rural Malawi through mobile health clinics.

    Get PDF
    SETTING: Malawi has chronic shortages of health workers, high burdens of human immunodeficiency virus (HIV) infection and malaria and a predominately rural population. Mobile health clinics (MHCs) could provide primary health care for adults and children in hard-to-reach areas. OBJECTIVES: To determine the feasibility, volume, and types of services provided by three MHCs from 2011 to 2013 in Mulanje District, Malawi. DESIGN: Cross-sectional retrospective study. RESULTS: The MHCs conducted 309 492 visits for primary health care, and in 2013 services operated on 99% of planned days. Despite an improvement in service provision, overall patient visits declined over the study period. Malaria and respiratory and gastro-intestinal conditions constituted 60% of visits. Females (n = 11 543) significantly outnumbered males (n = 2481) tested for HIV, yet males tested HIV-positive (27%) more often than females (14%). Malaria accounted for 26 421 (35%) visits for children aged <5 years, with a significant increase in the rainy season. Implementation of rapid diagnostic testing was associated with a decline in numbers treated for malaria. Antibiotic stockouts at government clinics were associated with increased MHC visits. CONCLUSION: MHCs can routinely provide primary health care for adults and children living in rural Malawi and complement fixed clinics. Moving from a complementary role to integration within the government health system remains a challenge

    H_c_3 for a thin-film superconductor with a ferromagnetic dot

    Full text link
    We investigate the effect of a ferromagnetic dot on a thin-film superconductor. We use a real-space method to solve the linearized Ginzburg-Landau equation in order to find the upper critical field, H_c_3. We show that H_c_3 is crucially dependent on dot composition and geometry, and may be significantly greater than H_c_2. H_c_3 is maximally enhanced when (1) the dot saturation magnetization is large, (2) the ratio of dot thickness to dot diameter is of order one, and (3) the dot thickness is large

    Critical point network for drainage between rough surfaces

    Get PDF
    In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations

    Designing transparent conductors using forbidden optical transitions

    Full text link
    Many semiconductors present weak or forbidden transitions at their fundamental band gaps, inducing a widened region of transparency. This occurs in high-performing n-type transparent conductors (TCs) such as Sn-doped In2O3 (ITO), however thus far the presence of forbidden transitions has been neglected in searches for new p-type TCs. To address this, we first compute high-throughput absorption spectra across ~18,000 semiconductors, showing that over half exhibit forbidden or weak optical transitions at their band edges. Next, we demonstrate that compounds with highly localized band edge states are more likely to present forbidden transitions. Lastly, we search this set for p-type and n-type TCs with forbidden or weak transitions. Defect calculations yield unexplored TC candidates such as ambipolar BeSiP2, Zr2SN2 and KSe, p-type BAs, Au2S, and AuCl, and n-type Ba2InGaO5, GaSbO4, and KSbO3, among others. We share our data set via the MPContribs platform, and we recommend that future screenings for optical properties use metrics representative of absorption features rather than band gap alone

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    Magnetic properties of submicron Co islands and their use as artificial pinning centers

    Full text link
    We report on the magnetic properties of elongated submicron magnetic islands and their influence on a superconducting film. The magnetic properties were studied by magnetization hysteresis loop measurements and scanning-force microscopy. In the as-grown state, the islands have a magnetic structure consisting of two antiparallel domains. This stable domain configuration has been directly visualized as a 2x2-checkerboard pattern by magnetic-force microscopy. In the remanent state, after magnetic saturation along the easy axis, all islands have a single-domain structure with the magnetic moment oriented along the magnetizing field direction. Periodic lattices of these Co islands act as efficient artificial pinning arrays for the flux lines in a superconducting Pb film deposited on top of the Co islands. The influence of the magnetic state of the dots on their pinning efficiency is investigated in these films, before and after the Co dots are magnetized.Comment: 6 pages including figure

    Formulation of the Dutch Atmospheric Large-Eddy Simulation (DALES) and Overview of Its Applications

    Get PDF
    The current version of the Dutch Atmospheric Large-Eddy Simulation (DALES) is presented. DALES is a large-eddy simulation code designed for studies of the physics of the atmospheric boundary layer, including convective and stable boundary layers as well as cloudy boundary layers. In addition, DALES can be used for studies of more specific cases, such as flow over sloping or heterogeneous terrain, and dispersion of inert and chemically active species. This paper contains an extensive description of the physical and numerical formulation of the code, and gives an overview of its applications and accomplishments in recent years
    • 

    corecore