3,062 research outputs found
Dynamical fluctuations in biochemical reactions and cycles
We develop theory for the dynamics and fluctuations in some cyclic and linear biochemical reactions. We use the approach of maximum caliber, which computes the ensemble of paths taken by the system, given a few experimental observables. This approach may be useful for interpreting single-molecule or few-particle experiments on molecular motors, enzyme reactions, ion-channels, and phosphorylation-driven biological clocks. We consider cycles where all biochemical states are observable. Our method shows how: (1) the noise in cycles increases with cycle size and decreases with the driving force that spins the cycle and (2) provides a recipe for estimating small-number features, such as probability of backward spin in small cycles, from experimental data. The back-spin probability diminishes exponentially with the deviation from equilibrium. We believe this method may also be useful for other few-particle nonequilibrium biochemical reaction systems
Secondary Structures in Long Compact Polymers
Compact polymers are self-avoiding random walks which visit every site on a
lattice. This polymer model is used widely for studying statistical problems
inspired by protein folding. One difficulty with using compact polymers to
perform numerical calculations is generating a sufficiently large number of
randomly sampled configurations. We present a Monte-Carlo algorithm which
uniformly samples compact polymer configurations in an efficient manner
allowing investigations of chains much longer than previously studied. Chain
configurations generated by the algorithm are used to compute statistics of
secondary structures in compact polymers. We determine the fraction of monomers
participating in secondary structures, and show that it is self averaging in
the long chain limit and strictly less than one. Comparison with results for
lattice models of open polymer chains shows that compact chains are
significantly more likely to form secondary structure.Comment: 14 pages, 14 figure
Sequence Heterogeneity Accelerates Protein Search for Targets on DNA
The process of protein search for specific binding sites on DNA is
fundamentally important since it marks the beginning of all major biological
processes. We present a theoretical investigation that probes the role of DNA
sequence symmetry, heterogeneity and chemical composition in the protein search
dynamics. Using a discrete-state stochastic approach with a first-passage
events analysis, which takes into account the most relevant physical-chemical
processes, a full analytical description of the search dynamics is obtained. It
is found that, contrary to existing views, the protein search is generally
faster on DNA with more heterogeneous sequences. In addition, the search
dynamics might be affected by the chemical composition near the target site.
The physical origins of these phenomena are discussed. Our results suggest that
biological processes might be effectively regulated by modifying chemical
composition, symmetry and heterogeneity of a genome.Comment: 10 pages, 5 figure
A lattice model of hydrophobic interactions
Hydrogen bonding is modeled in terms of virtual exchange of protons between
water molecules. A simple lattice model is analyzed, using ideas and techniques
from the theory of correlated electrons in metals. Reasonable parameters
reproduce observed magnitudes and temperature dependence of the hydrophobic
interaction between substitutional impurities and water within this lattice.Comment: 7 pages, 3 figures. To appear in Europhysics Letter
Nonuniversal power law scaling in the probability distribution of scientific citations
We develop a model for the distribution of scientific citations. The model
involves a dual mechanism: in the direct mechanism, the author of a new paper
finds an old paper A and cites it. In the indirect mechanism, the author of a
new paper finds an old paper A only via the reference list of a newer
intermediary paper B, which has previously cited A. By comparison to citation
databases, we find that papers having few citations are cited mainly by the
direct mechanism. Papers already having many citations ('classics') are cited
mainly by the indirect mechanism. The indirect mechanism gives a power-law
tail. The 'tipping point' at which a paper becomes a classic is about 21
citations for papers published in the Institute for Scientific Information
(ISI) Web of Science database in 1981, 29 for Physical Review D papers
published from 1975-1994, and 39 for all publications from a list of high
h-index chemists assembled in 2007. The power-law exponent is not universal.
Individuals who are highly cited have a systematically smaller exponent than
individuals who are less cited.Comment: 7 pages, 3 figures, 2 table
Microcanonical versus Canonical Analysis of Protein Folding
The microcanonical analysis is shown to be a powerful tool to characterize
the protein folding transition and to neatly distinguish between good and bad
folders. An off-lattice model with parameter chosen to represent polymers of
these two types is used to illustrate this approach. Both canonical and
microcanonical ensembles are employed. The required calculations were performed
using parallel tempering Monte Carlo simulations. The most revealing features
of the folding transition are related to its first-order-like character,
namely, the S-bend pattern in the caloric curve, which gives rise to negative
microcanonical specific heats, and the bimodality of the energy distribution
function at the transition temperatures. Models for a good folder are shown to
be quite robust against perturbations in the interaction potential parameters.Comment: 4 pages, 4 figure
Dry and wet interfaces: Influence of solvent particles on molecular recognition
We present a coarse-grained lattice model to study the influence of water on
the recognition process of two rigid proteins. The basic model is formulated in
terms of the hydrophobic effect. We then investigate several modifications of
our basic model showing that the selectivity of the recognition process can be
enhanced by considering the explicit influence of single solvent particles.
When the number of cavities at the interface of a protein-protein complex is
fixed as an intrinsic geometric constraint, there typically exists a
characteristic fraction that should be filled with water molecules such that
the selectivity exhibits a maximum. In addition the optimum fraction depends on
the hydrophobicity of the interface so that one has to distinguish between dry
and wet interfaces.Comment: 11 pages, 7 figure
Evolution of the potential-energy surface of amorphous silicon
The link between the energy surface of bulk systems and their dynamical
properties is generally difficult to establish. Using the activation-relaxation
technique (ART nouveau), we follow the change in the barrier distribution of a
model of amorphous silicon as a function of the degree of relaxation. We find
that while the barrier-height distribution, calculated from the initial
minimum, is a unique function that depends only on the level of distribution,
the reverse-barrier height distribution, calculated from the final state, is
independent of the relaxation, following a different function. Moreover, the
resulting gained or released energy distribution is a simple convolution of
these two distributions indicating that the activation and relaxation parts of
a the elementary relaxation mechanism are completely independent. This
characterized energy landscape can be used to explain nano-calorimetry
measurements.Comment: 5 pages, 4 figure
Design of Copolymeric Materials
We devise a method for designing materials that will have some desired
structural characteristics. We apply it to multiblock copolymers that have two
different types of monomers, A and B. We show how to determine what sequence of
A's and B's should be synthesised in order to give a particular structure and
morphology. %For example in a melt of such %polymers, one may wish to engineer
a body-centered %cubic structure. Using this method in conjunction with the
theory of microphase separation developed by Leibler, we show it is possible to
efficiently search for a desired morphology. The method is quite general and
can be extended to design isolated heteropolymers, such as proteins, with
desired structural characteristics. We show that by making certain
approximations to the exact algorithm, a method recently proposed by
Shakhnovich and Gutin is obtained. The problems with this method are discussed
and we propose an improved approximate algorithm that is computationally
efficient.Comment: 15 pages latex 2.09 and psfig, 1 postscript figure
- …
