The process of protein search for specific binding sites on DNA is
fundamentally important since it marks the beginning of all major biological
processes. We present a theoretical investigation that probes the role of DNA
sequence symmetry, heterogeneity and chemical composition in the protein search
dynamics. Using a discrete-state stochastic approach with a first-passage
events analysis, which takes into account the most relevant physical-chemical
processes, a full analytical description of the search dynamics is obtained. It
is found that, contrary to existing views, the protein search is generally
faster on DNA with more heterogeneous sequences. In addition, the search
dynamics might be affected by the chemical composition near the target site.
The physical origins of these phenomena are discussed. Our results suggest that
biological processes might be effectively regulated by modifying chemical
composition, symmetry and heterogeneity of a genome.Comment: 10 pages, 5 figure