4,449 research outputs found
Fundamental relation between longitudinal and transverse conductivities in the quantum Hall system
We investigate the relation between the diagonal () and
off-diagonal () components of the conductivity tensor in the
quantum Hall system. We calculate the conductivity components for a short-range
impurity potential using the linear response theory, employing an approximation
that simply replaces the self-energy by a constant value
with the scattering time. The approximation is equivalent to assuming
that the broadening of a Landau level due to disorder is represented by a
Lorentzian with the width . Analytic formulas are
obtained for both and within the framework of this
simple approximation at low temperatures. By examining the leading terms in
and , we find a proportional relation between
and . The relation, after
slight modification to account for the long-range nature of the impurity
potential, is shown to be in quantitative agreement with experimental results
obtained in the GaAs/AlGaAs two-dimensional electron system at the low
magnetic-field regime where spin splitting is negligibly small.Comment: 21 pages, 8 figures, accepted for publication in J. Phys.: Condens.
Matte
Magnetoroton scattering by phonons in the fractional quantum Hall regime
Motivated by recent phonon spectroscopy experiments in the fractional quantum
Hall regime we consider processes in which thermally excited magnetoroton
excitations are scattered by low energy phonons. We show that such scattering
processes can never give rise to dissociation of magnetorotons into unbound
charged quasiparticles as had been proposed previously. In addition we show
that scattering of magnetorotons to longer wavelengths by phonon absorption is
possible because of the shape of the magnetoroton dispersion curve and it is
shown that there is a characteristic cross-over temperature above which the
rate of energy transfer to the electron gas changes from an exponential
(activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev
Fermi Edge Singularities in Transport through Quantum Dots
We study the Fermi-edge singularity appearing in the current-voltage
characteristics for resonant tunneling through a localized level at finite
temperature. An explicit expression for the current at low temperature and near
the threshold for the tunneling process is presented which allows to coalesce
data taken at different temperatures to a single curve. Based on this scaling
function for the current we analyze experimental data from a GaAs-AlAs-GaAs
tunneling device with embedded InAs quantum dots obtained at low temperatures
in high magnetic fields.Comment: 12 pages, 5 figure
Metallicities of M Dwarf Planet Hosts from Spectral Synthesis
We present the first spectroscopic metallicities of three M dwarfs with known
or candidate planetary mass companions. We have analyzed high resolution, high
signal-to-noise spectra of these stars which we obtained at McDonald
Observatory. Our analysis technique is based on spectral synthesis of atomic
and molecular features using recently revised cool-star model atmospheres and
spectrum synthesis code. The technique has been shown to yield results
consistent with the analyses of solar-type stars and allows measurements of M
dwarf [M/H] values to 0.12 dex precision. From our analysis, we find [M/H] =
-0.12, -0.32, and -0.33 for GJ 876, GJ 436, and GJ 581 respectively. These
three M dwarf planet hosts have sub-solar metallicities, a surprising departure
from the trend observed in FGK-type stars. This study is the first part of our
ongoing work to determine the metallicities of the M dwarfs included in the
McDonald Observatory planet search program.Comment: 13 pages, 2 figures, accepted for publication in ApJ
Localized states in strong magnetic field: resonant scattering and the Dicke effect
We study the energy spectrum of a system of localized states coupled to a 2D
electron gas in strong magnetic field. If the energy levels of localized states
are close to the electron energy in the plane, the system exhibits a kind of
collective behavior analogous to the Dicke effect in optics. The latter
manifests itself in ``trapping'' of electronic states by localized states. At
the same time, the electronic density of states develops a gap near the
resonance. The gap and the trapping of states appear to be complementary and
reflect an intimate relation between the resonant scattering and the Dicke
effect. We reveal this relation by presenting the exact solution of the problem
for the lowest Landau level. In particular, we show that in the absence of
disorder the system undergoes a phase transition at some critical concentration
of localized states.Comment: 28 pages + 9 fig
Probing the quantum phase transition in the Dicke model through mechanical vibrations
This paper is concerned with quantum dynamics of a system coupled to a
critical reservoir. In this context, we employ the Dicke model which is known
to exhibit a super radiant quantum phase transition (QPT) and we allow one of
the mirrors to move under a linear restoring force. The electromagnetic field
couples to the movable mirror though radiation pressure just like in typical
optomechanical setups. We show that, in the thermodynamical limit, the
super-radiant phase induces a classical driving force on the mirror without
causing decoherence.Comment: 6 pages, 3 figures, final versio
Recommended from our members
Mapping lung cancer epithelial-mesenchymal transition states and trajectories with single-cell resolution.
Elucidating the spectrum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises insights on cancer progression and drug resistance. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFβ-treatment and identify, through TGFβ-withdrawal, a distinct MET state. We demonstrate significant differences between EMT and MET trajectories using a computational tool (TRACER) for reconstructing trajectories between cell states. In addition, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET PHENOtypic STAte MaP (PHENOSTAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET PHENOSTAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework to phenotypically characterize clinical samples in the context of in vitro EMT-MET findings which could help assess clinical relevance of EMT in cancer in future studies
A Solvable Model of Two-Dimensional Dilaton-Gravity Coupled to a Massless Scalar Field
We present a solvable model of two-dimensional dilaton-gravity coupled to a
massless scalar field. We locally integrate the field equations and briefly
discuss the properties of the solutions. For a particular choice of the
coupling between the dilaton and the scalar field the model can be interpreted
as the two-dimensional effective theory of 2+1 cylindrical gravity minimally
coupled to a massless scalar field.Comment: 6 pages, RevTeX, to be published in Phys. Rev.
- …