5,062 research outputs found

    FARMERS' VEG RISK PERCEPTIONS AND ADOPTION OF VEG CROP INSURANCE

    Get PDF
    Producer survey results are analyzed to determine factors influencing value-enhanced grain (VEG) risk perceptions and VEG crop insurance adoption. VEG production is perceived to be riskier than commodity production. VEG types, input costs, and production problems affect risk perceptions. Factors including previous insurance use impact VEG crop insurance adoption.Risk and Uncertainty,

    Dynamics of Limit Cycle Oscillator Subject to General Noise

    Full text link
    The phase description is a powerful tool for analyzing noisy limit cycle oscillators. The method, however, has found only limited applications so far, because the present theory is applicable only to the Gaussian noise while noise in the real world often has non-Gaussian statistics. Here, we provide the phase reduction for limit cycle oscillators subject to general, colored and non-Gaussian, noise including heavy-tailed noise. We derive quantifiers like mean frequency, diffusion constant, and the Lyapunov exponent to confirm consistency of the result. Applying our results, we additionally study a resonance between the phase and noise.Comment: main paper: 4 pages, 2 figure; auxiliary material: 5-7 pages of the document, 1 figur

    Magnetic and electrical properties of (Pu,Lu)Pd3

    Get PDF
    We present measurements of the magnetic susceptibility, heat capacity and electrical resistivity of Pu1−x_{1-x}Lux_xPd3_3, with xx=0, 0.1, 0.2, 0.5, 0.8 and 1. PuPd3_3 is an antiferromagnetic heavy fermion compound with TN=24T_N=24~K. With increasing Lu doping, both the Kondo and RKKY interaction strengths fall, as judged by the Sommerfeld coefficient γ\gamma and N\'eel temperature TNT_N. Fits to a crystal field model of the resistivity also support these conclusions. The paramagnetic effective moment μeff\mu_{\mathrm{eff}} increases with Lu dilution, indicating a decrease in the Kondo screening. In the highly dilute limit, μeff\mu_{\mathrm{eff}} approaches the value predicted by intermediate coupling calculations. In conjunction with an observed Schottky peak at ∼\sim60~K in the magnetic heat capacity, corresponding to a crystal field splitting of ∼\sim12~meV, a mean-field intermediate coupling model with nearest neighbour interactions has been developed.Comment: 13 pages, 13 figure

    Seismic wave amplification: Basin geometry vs soil layering.

    Get PDF
    International audienceThe main purpose of the paper is to analyze seismic site effects in alluvial basins and to discuss the influence of the knowledge of the local geology on site amplification simulations. Wave amplification is due to a combined effect of impedance ratio between soil layers and surface wave propagation due to the limited extent of the basin. In this paper, we investigate the influence of the complexity of the soil layering (simplified or detailed layering) on site effects in both time and frequency domain. The analysis is performed by the Boundary Element Method. The European test site of Volvi (Greece) is considered and 2D amplification in the basin is investigated for various soil models. Seismic signals are computed in time domain for synthetic Ricker signals as well as actual measurements. They are analyzed in terms of amplification level as well as time duration lengthening (basin effects) for both SH and SV waves. These results show that the geometry of the basin has a very strong influence on seismic wave amplification in terms of both amplification level and time duration lengthening. The combined influence of geometry/layering of alluvial basins seems to be very important for the analysis of 2D (3D) site effects but a simplified analysis could sometimes be sufficient. In the case of Volvi European test site, this influence leads to (measured and computed) 2D amplification ratios far above 1D estimations from horizontal layering descriptions

    Estimate of muscle-shortening rate during locomotion

    Full text link

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    Fabrication and characterization of dual function nanoscale pH-scanning ion conductance microscopy (SICM) probes for high resolution pH mapping

    Get PDF
    The easy fabrication and use of nanoscale dual function pH-scanning ion conductance microscopy (SICM) probes is reported. These probes incorporate an iridium oxide coated carbon electrode for pH measurement and an SICM barrel for distance control, enabling simultaneous pH and topography mapping. These pH-SICM probes were fabricated rapidly from laser pulled theta quartz pipets, with the pH electrode prepared by in situ carbon filling of one of the barrels by the pyrolytic decomposition of butane, followed by electrodeposition of a thin layer of hydrous iridium oxide. The other barrel was filled with an electrolyte solution and Ag/AgCl electrode as part of a conductance cell for SICM. The fabricated probes, with pH and SICM sensing elements typically on the 100 nm scale, were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and various electrochemical measurements. They showed a linear super-Nernstian pH response over a range of pH (pH 2–10). The capability of the pH-SICM probe was demonstrated by detecting both pH and topographical changes during the dissolution of a calcite microcrystal in aqueous solution. This system illustrates the quantitative nature of pH-SICM imaging, because the dissolution process changes the crystal height and interfacial pH (compared to bulk), and each is sensitive to the rate. Both measurements reveal similar dissolution rates, which are in agreement with previously reported literature values measured by classical bulk methods
    • …
    corecore