253 research outputs found

    Male infertility due to germ cell apoptosis in mice lacking the thiamin carrier, Tht1. A new insight into the critical role of thiamin in spermatogenesis.

    Get PDF
    A mouse model of thiamin-responsive megaloblastic anemia (diabetes mellitus, deafness, megaloblastic anemia) lacking functional Slc19a2 has been generated and unexpectedly found to have a male-specific sterility phenotype. We describe here the characterization of the testis-specific effects of absence of the high-affinity thiamin transporter, Tht1. Null males were found to have hypoplastic testes secondary to germ cell depletion. Morphologic and expression analysis revealed that under conditions of standard thiamin intake, tissues affected in the syndrome (pancreatic beta-cell, hematopoietic cells, auditory nerve) maintained normal function but pachytene stage spermatocytes underwent apoptosis. Under conditions of thiamin challenge, the apoptotic cell loss extended to earlier stages of germ cells but spared Sertoli cells and Leydig cells. Injection of high-dose thiamin was effective in reversing the spermatogenic failure, suggesting that the absence of the thiamin carrier could be overcome by diffusion-mediated transport at supranormal thiamin concentrations. These observations demonstrated that male germ cells, particularly those with high thiamin transporter expression beyond the blood-testis barrier, were more susceptible to apoptosis triggered by intracellular thiamin deficiency than any other tissue type. The findings described here highlight an unexpected and critical role for thiamin transport and metabolism in spermatogenesis

    Women in geosciences within the Italian University system in the last 20 years

    Get PDF
    Abstract. This work aims at providing an updated scenario on the underrepresentation of women in the Italian university system in the area of geosciences in the last two decades. The retrieved official data on permanent full and associate professors in the 19-years considered highlight some positive trends: an increase in the number of female full professors from 9.0 % to 18.5 % and in female associate professors from 23.6 % to 28.9 %. However, although the number of female full professors almost doubled in this period, such increase still represents an excessively slow trend. Slightly better is the trend related to associate professors. The picture portrayed for non-permanent researchers, called RTD-b, as introduced by the Italian Law no. 240/2010 (essentially tenure-track associate professor position), instead raises strong concerns for the future seen that the female percentage is just 26 %, thus exhibiting a significant gender imbalance. This is even more significant if we consider that the student population in geosciences shows a gender imbalance of about 37 %, no gender gap at PhD level and a relatively high Glass Ceiling Index (GCI) during the career progression of women. An analysis of the geographical distribution of female researchers in geosciences has evidenced that, although the percentages of women are comparable, the GCI calculated in Southern Italy has been alarmingly high in the last 2–3 years and is divergent from the decrease observed in Northern and Central Italy. The work also analyses the gender balance over different areas of geosciences, showing that in Paleontology and Paleoecology the gap is inverted with more female than male professors, both at full and associate professor level, whereas the gap is almost closed in Mineralogy for associate professors, far though from being balanced for full professors. All remaining geological disciplines suffer a gender imbalance. Further analysis carried out in this work unveils that the number of female full professor is low (<10 %) both at national and regional level in the 2000–2009 decade, consistent with a GCI higher than 2.5–3. From 2010 to 2013, likely in response to the Italian Law no. 240 of 2010, an important progressive increase, associated with a decrease of GCI, is visible. However, from 2014 to 2019 the percentage remains constant (∼20 %) with the exception of Southern Italy, which displays a return to lower values (<15 %). Finally, an international comparison with countries like Germany and the USA definitively indicates that the Italian university system is more equal in terms of gender balance. Even if some significant and positive steps have been carried out in the Italian university system, still much effort is required to fight a general and crucial problem which is the gender balance issue. Results could be achieved promoting work-life balance policies that better reconcile family and work, stimulating a reorganization of the work system still currently set on the male model but, and more importantly, changing the prevailing patriarchal mentality. The Italian university system has already a great example to follow: the zero-pay gap. This is possibly the only system worldwide where male and female professors earn the same identical salary, compared to the salary gap of between 15 % and 30 % of countries richer than Italy, and must be the target to reach, in the near future, for gender balance

    Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant

    Get PDF
    © Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated

    Hydrolytic Reactivity Trends among Potential Prodrugs of the O2-Glycosylated Diazeniumdiolate Family. Targeting Nitric Oxide to Macrophages for Antileishmanial Activity

    Get PDF
    Glycosylated diazeniumdiolates of structure R2NN(O)dNO-R ′ (R ′ ) a saccharide residue) are potential prodrugs of the nitric oxide (NO)-releasing but acid-sensitive R2NN(O)dNO- ion. Moreover, cleaving the acid-stable glycosides under alkaline conditions provides a convenient protecting group strategy for diazeniumdiolate ions. Here, we report comparative hydrolysis rate data for five representative glycosylated diazeniumdiolates at pH 14, 7.4, and 3.8-4.6 as background for further developing both the protecting group application and the ability to target NO pharmacologically to macrophages harboring intracellular pathogens. Confirming the potential in the latter application, adding R2NN(O)dNO-GlcNAc (where R2N) diethylamino or pyrrolidin-l-yl and GlcNAc) N-acetylglucosamin-l-yl) to cultures of infected mouse macrophages that were deficient in inducible NO synthase caused rapid death of the intracellular protozoan parasite Leishmania major with no host cell toxicity

    Identification of SNP and SSR markers in eggplant using RAD tag sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The eggplant (<it>Solanum melongena </it>L.) genome is relatively unexplored, especially compared to those of the other major <it>Solanaceae </it>crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant.</p> <p>Results</p> <p>RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci.</p> <p>Conclusion</p> <p>The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the <it>Solanaceae </it>family.</p

    Reporting guidelines for surgical technique could be improved: a scoping review and a call for action.

    Get PDF
    To identify reporting guidelines related to surgical technique and propose recommendations for areas that require improvement. A protocol-guided scoping review was conducted. A literature search of MEDLINE, the EQUATOR Network Library, Google Scholar, and Networked Digital Library of Theses and Dissertations was conducted to identify surgical technique reporting guidelines published up to December 31, 2021. We finally included 55 surgical technique reporting guidelines, vascular surgery (n = 18, 32.7%) was the most common among the clinical specialties covered. The included guidelines generally showed a low degree of international and multidisciplinary cooperation. Few guidelines provided a detailed development process (n = 14, 25.5%), conducted a systematic literature review (n = 13, 23.6%), used the Delphi method (n = 4, 7.3%), or described post-publication strategy (n = 6, 10.9%). The vast majority guidelines focused on the reporting of intraoperative period (n = 50, 90.9%). However, of the guidelines requiring detailed descriptions of surgical technique methodology (n = 43, 78.2%), most failed to provide guidance on what constitutes an adequate description. Our study demonstrates significant deficiencies in the development methodology and practicality of reporting guidelines for surgical technique. A standardized reporting guideline that is developed rigorously and focuses on details of surgical technique may serve as a necessary impetus for change

    Manipulating Biopolymer Dynamics by Anisotropic Nanoconfinement

    Full text link
    How the geometry of nano-sized confinement affects dynamics of biomaterials is interesting yet poorly understood. An elucidation of structural details upon nano-sized confinement may benefit manufacturing pharmaceuticals in biomaterial sciences and medicine. The behavior of biopolymers in nano-sized confinement is investigated using coarse-grained models and molecular simulations. Particularly, we address the effects of shapes of a confinement on protein folding dynamics by measuring folding rates and dissecting structural properties of the transition states in nano-sized spheres and ellipsoids. We find that when the form of a confinement resembles the geometrical properties of the transition states, the rates of folding kinetics are most enhanced. This knowledge of shape selectivity in identifying optimal conditions for reactions will have a broad impact in nanotechnology and pharmaceutical sciences.Comment: to appear in Nano Letter

    Mouse TRIP13/PCH2 Is Required for Recombination and Normal Higher-Order Chromosome Structure during Meiosis

    Get PDF
    Accurate chromosome segregation during meiosis requires that homologous chromosomes pair and become physically connected so that they can orient properly on the meiosis I spindle. These connections are formed by homologous recombination closely integrated with the development of meiosis-specific, higher-order chromosome structures. The yeast Pch2 protein has emerged as an important factor with roles in both recombination and chromosome structure formation, but recent analysis suggested that TRIP13, the mouse Pch2 ortholog, is not required for the same processes. Using distinct Trip13 alleles with moderate and severe impairment of TRIP13 function, we report here that TRIP13 is required for proper synaptonemal complex formation, such that autosomal bivalents in Trip13-deficient meiocytes frequently displayed pericentric synaptic forks and other defects. In males, TRIP13 is required for efficient synapsis of the sex chromosomes and for sex body formation. Furthermore, the numbers of crossovers and chiasmata are reduced in the absence of TRIP13, and their distribution along the chromosomes is altered, suggesting a role for TRIP13 in aspects of crossover formation and/or control. Recombination defects are evident very early in meiotic prophase, soon after DSB formation. These findings provide evidence for evolutionarily conserved functions for TRIP13/Pch2 in both recombination and formation of higher order chromosome structures, and they support the hypothesis that TRIP13/Pch2 participates in coordinating these key aspects of meiotic chromosome behavior

    Tex19.1 Promotes Spo11-Dependent Meiotic Recombination in Mouse Spermatocytes

    Get PDF
    Meiosis relies on the SPO11 endonuclease to generate the recombinogenic DNA double strand breaks (DSBs) required for homologous chromosome synapsis and segregation. The number of meiotic DSBs needs to be sufficient to allow chromosomes to search for and find their homologs, but not excessive to the point of causing genome instability. Here we report that the mammal-specific gene Tex19.1 promotes Spo11-dependent recombination in mouse spermatocytes. We show that the chromosome asynapsis previously reported in Tex19.1-/- spermatocytes is preceded by reduced numbers of recombination foci in leptotene and zygotene. Tex19.1 is required for normal levels of early Spo11-dependent recombination foci during leptotene, but not for upstream events such as MEI4 foci formation or accumulation of H3K4me3 at recombination hotspots. Furthermore, we show that mice carrying mutations in Ubr2, which encodes an E3 ubiquitin ligase that interacts with TEX19.1, phenocopy the Tex19.1-/- recombination defects. These data suggest that Tex19.1 and Ubr2 are required for mouse spermatocytes to accumulate sufficient Spo11-dependent recombination to ensure that the homology search is consistently successful, and reveal a hitherto unknown genetic pathway promoting meiotic recombination in mammals

    Phosphorylation of Chromosome Core Components May Serve as Axis Marks for the Status of Chromosomal Events during Mammalian Meiosis

    Get PDF
    Meiotic recombination and chromosome synapsis between homologous chromosomes are essential for proper chromosome segregation at the first meiotic division. While recombination and synapsis, as well as checkpoints that monitor these two events, take place in the context of a prophase I-specific axial chromosome structure, it remains unclear how chromosome axis components contribute to these processes. We show here that many protein components of the meiotic chromosome axis, including SYCP2, SYCP3, HORMAD1, HORMAD2, SMC3, STAG3, and REC8, become post-translationally modified by phosphorylation during the prophase I stage. We found that HORMAD1 and SMC3 are phosphorylated at a consensus site for the ATM/ATR checkpoint kinase and that the phosphorylated forms of HORMAD1 and SMC3 localize preferentially to unsynapsed chromosomal regions where synapsis has not yet occurred, but not to synapsed or desynapsed regions. We investigated the genetic requirements for the phosphorylation events and revealed that the phosphorylation levels of HORMAD1, HORMAD2, and SMC3 are dramatically reduced in the absence of initiation of meiotic recombination, whereas BRCA1 and SYCP3 are required for normal levels of phosphorylation of HORMAD1 and HORMAD2, but not of SMC3. Interestingly, reduced HORMAD1 and HORMAD2 phosphorylation is associated with impaired targeting of the MSUC (meiotic silencing of unsynapsed chromatin) machinery to unsynapsed chromosomes, suggesting that these post-translational events contribute to the regulation of the synapsis surveillance system. We propose that modifications of chromosome axis components serve as signals that facilitate chromosomal events including recombination, checkpoint control, transcription, and synapsis regulation
    corecore