5,109 research outputs found

    Simultaneous multi-frequency single-pulse properties of AXP XTE J1810-197

    Full text link
    We have used the 76-m Lovell, 94-m equivalent WSRT and 100-m Effelsberg radio telescopes to investigate the simultaneous single-pulse properties of the radio emitting magnetar AXP XTE J1810-197 at frequencies of 1.4, 4.8 and 8.35 GHz during May and July 2006. We study the magnetar's pulse-energy distributions which are found to be very peculiar as they are changing on time-scales of days and cannot be fit by a single statistical model. The magnetar exhibits strong spiky single giant-pulse-like subpulses, but they do not fit the definition of the giant pulse or giant micropulse phenomena. Measurements of the longitude-resolved modulation index reveal a high degree of intensity fluctuations on day-to-day time-scales and dramatic changes across pulse phase. We find the frequency evolution of the modulation index values differs significantly from what is observed in normal radio pulsars. We find that no regular drifting subpulse phenomenon is present at any of the observed frequencies at any observing epoch. However, we find a quasi-periodicity of the subpulses present in the majority of the observing sessions. A correlation analysis indicates a relationship between components from different frequencies. We discuss the results of our analysis in light of the emission properties of normal radio pulsars and a recently proposed model which takes radio emission from magnetars into consideration.Comment: 15 pages, 11 figures, accepted for publication by MNRA

    Solar coronal electron heating by short-wavelength dispersive shear Alfvén waves

    Get PDF
    This work was partially supported by the STFC through the Centre for Fundamental Physics (CfFP) at Rutherford Appleton Laboratory, Chilton, Didcot, UK. BE acknowledges support by the Engineering and Physical Sciences Research Council (EPSRC), UK, Grant no EP/M009386/1.The electron heating of the solar coronal plasma has remained one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite amplitude short-wavelength (in comparison with the ion gyroradius) dispersive shear Alfven (SWDSA) waves that propagate obliquely to the ambient magnetic field direction in the solar corona. Specifically, it is demonstrated that SWDSA waves can significantly contribute to the solar coronal electron heating via collisionless heating involving SWDSA wave-electron interactions.Publisher PDFPeer reviewe

    Analytical model for the perpendicular temperature enhancement in lower-hybrid current drive

    Get PDF
    The enhancement of the perpendicular temperature inside the resonant region, observed in numerical studies of the two-dimensional Fokker-Planck equation, combined with unidirectional RF quasilinear diffusion, is modeled on the basis of the collisional relaxation equations. Strong RF diffusion is assumed and relativistic effects are taken into account. The resulting enhanced perpendicular temperature is a function of the position and the width of the applied RF spectrum. Good agreement with two-dimensional Fokker-Planck numerical results has been found

    Solar coronal heating by short-wavelength dispersive shear Alfvén waves

    Get PDF
    The electron heating of the solar coronal plasma has remained as one of the most important problems in solar physics. An explanation of the electron heating rests on the identification of the energy source and appropriate physical mechanisms via which the energy can be channelled to the electrons. Our objective here is to present an estimate for the electron heating rate in the presence of finite amplitude short-wavelength (in comparison with the ion gyroradius) dispersive shear Alfven (SWDSA) waves that propagate obliquely to the ambient magnetic field direction in the solar corona. Specifically, it is demonstrated that SWDSA waves can significantly contribute to the solar coronal electron heating via collisionless heating involving SWDSA wave-electron interactions

    Numerical simulation of unconstrained cyclotron resonant maser emission

    Get PDF
    When a mainly rectilinear electron beam is subject to significant magnetic compression, conservation of magnetic moment results in the formation of a horseshoe shaped velocity distribution. It has been shown that such a distribution is unstable to cyclotron emission and may be responsible for the generation of Auroral Kilometric Radiation (AKR) an intense rf emission sourced at high altitudes in the terrestrial auroral magnetosphere. PiC code simulations have been undertaken to investigate the dynamics of the cyclotron emission process in the absence of cavity boundaries with particular consideration of the spatial growth rate, spectral output and rf conversion efficiency. Computations reveal that a well-defined cyclotron emission process occurs albeit with a low spatial growth rate compared to waveguide bounded simulations. The rf output is near perpendicular to the electron beam with a slight backward-wave character reflected in the spectral output with a well defined peak at 2.68GHz, just below the relativistic electron cyclotron frequency. The corresponding rf conversion efficiency of 1.1% is comparable to waveguide bounded simulations and consistent with the predictions of kinetic theory that suggest efficient, spectrally well defined radiation emission can be obtained from an electron horseshoe distribution in the absence of radiation boundaries.Publisher PD

    Simultaneous Retrieval of Aerosol and Cloud Properties During the MILAGRO Field Campaign

    Get PDF
    Estimation of Direct Climate Forcing (DCF) due to aerosols in cloudy areas has historically been a difficult task, mainly because of a lack of appropriate measurements. Recently, passive remote sensing instruments have been developed that have the potential to retrieve both cloud and aerosol properties using polarimetric, multiple view angle, and multi spectral observations, and therefore determine DCF from aerosols above clouds. One such instrument is the Research Scanning Polarimeter (RSP), an airborne prototype of a sensor on the NASA Glory satellite, which unfortunately failed to reach orbit during its launch in March of 2011. In the spring of 2006, the RSP was deployed on an aircraft based in Veracruz, Mexico, as part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign. On 13 March, the RSP over flew an aerosol layer lofted above a low altitude marine stratocumulus cloud close to shore in the Gulf of Mexico. We investigate the feasibility of retrieving aerosol properties over clouds using these data. Our approach is to first determine cloud droplet size distribution using the angular location of the cloud bow and other features in the polarized reflectance. The selected cloud was then used in a multiple scattering radiative transfer model optimization to determine the aerosol optical properties and fine tune the cloud size distribution. In this scene, we were able to retrieve aerosol optical depth, the fine mode aerosol size distribution parameters and the cloud droplet size distribution parameters to a degree of accuracy required for climate modeling. This required assumptions about the aerosol vertical distribution and the optical properties of the coarse aerosol size mode. A sensitivity study was also performed to place this study in the context of future systematic scanning polarimeter observations, which found that the aerosol complex refractive index can also be observed accurately if the aerosol optical depth is larger than roughly 0.8 at a wavelength of (0.555 m)
    • …
    corecore