9,514 research outputs found

    Suppression of negative-energy propagation in the Dirac phenomenology due to the structure of a nucleon

    Get PDF
    The relativistic impulse optical model is investigated using derivative coupling potential. We found the suppression of the negative-energy propagation compared to the usual t-rho potential. However, it can be taken into account by the renormalized potential in the Dirac equation. Thus, the Dirac phenomenology is still valid

    Effect of Meson Cloud of Nucleon on Nuclear Matter Saturation

    Get PDF
    We investigate the effect of the meson cloud of nucleon on saturation properties of nuclear matter. Quantum correction to the scalar and vector potentials in the Walecka model is taken into account. It leads to the renormalized wave function of a nucleon in the medium, or the dressed nucleon by the meson cloud. Consequently, the NN-sigma and NN-omega coupling constants are renormalized. The renormalization constant can be related to the anomalous magnetic moment. The resultant renormalized Walecka model is able to reproduce nuclear matter saturation properties well

    Equivalence between Schwinger and Dirac schemes of quantization

    Full text link
    This paper introduces the modified version of Schwinger's quantization method, in which the information on constraints and the choice of gauge conditions are included implicitly in the choice of variations used in quantization scheme. A proof of equivalence between Schwinger- and Dirac-methods for constraint systems is given.Comment: 12pages, No figures, Latex, The proof is improved and one reference is adde

    Numerical and Theoretical Study of a Monodisperse Hard-Sphere Glass Former

    Get PDF
    There exists a variety of theories of the glass transition and many more numerical models. But because the models need built-in complexity to prevent crystallization, comparisons with theory can be difficult. We study the dynamics of a deeply supersaturated \emph{monodisperse} four-dimensional (4D) hard-sphere fluid, which has no such complexity, but whose strong intrinsic geometrical frustration inhibits crystallization, even when deeply supersaturated. As an application, we compare its behavior to the mode-coupling theory (MCT) of glass formation. We find MCT to describe this system better than any other structural glass formers in lower dimensions. The reduction in dynamical heterogeneity in 4D suggested by a milder violation of the Stokes-Einstein relation could explain the agreement. These results are consistent with a mean-field scenario of the glass transition.Comment: 5 pages, 3 figure

    Stable Marriage with Multi-Modal Preferences

    Full text link
    We introduce a generalized version of the famous Stable Marriage problem, now based on multi-modal preference lists. The central twist herein is to allow each agent to rank its potentially matching counterparts based on more than one "evaluation mode" (e.g., more than one criterion); thus, each agent is equipped with multiple preference lists, each ranking the counterparts in a possibly different way. We introduce and study three natural concepts of stability, investigate their mutual relations and focus on computational complexity aspects with respect to computing stable matchings in these new scenarios. Mostly encountering computational hardness (NP-hardness), we can also spot few islands of tractability and make a surprising connection to the \textsc{Graph Isomorphism} problem

    Mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    Full text link
    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory.Comment: version to be published in Fast Track Communication in Journal of Physics A:Math. Theo
    • 

    corecore