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Effect of Meson Cloud of Nucleon on Nuclear Matter Saturation 
 

K. Miyazaki 

 

Abstract 

We investigate the effect of the meson cloud of nucleon on saturation properties of nuclear matter . 

Quantum correction to the scalar and vector potentials in the Walecka model is taken into account. It leads 

to the renormalized wave function of a nucleon in the medium, or the dressed nucleon by the meson cloud. 

Consequently, the σNN  and ωNN  coupling constants are renormalized. The renormalization constant 

can be related to the anomalous magnetic moment. The resultant renormalized Walecka model is able to 

reproduce nuclear matter saturation properties well.  

 

I.   Introduction 

During the last twenty years, the relativistic models for nucleus have been largely developed and had 

great successes [1-5]. The essential ingredients of the models are the shifts of mass and energy of a nucleon 

in the nuclear medium by the strong negative scalar potential (or the mean σ -meson field σ ) and the 

strong positive vector potential (or the mean ω -meson field ω ). This has been already shown by the 

original work by Walecka [1]. Recently, Birse [6] showed more general result, a low energy theorem for a 

nucleon in the mean scalar and vector fields. Up to the second order of the mean fields, the effective mass 
*M  and the energy ( )E p  of the nucleon were generally expressed by 
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where M  and ( )ε p  are the mass and the energy of a free nucleon of momentum p . These expressions, 

which are derived from the general dispersion relation, rely only on the covariance of the dynamics. They 

are independent of models and hold for both composite and elementary particle. Birse referred to the 

quantities ξ ’s as polarizabilities of the nucleon by the meson fields. They are identically zero in the 

E
X

T
-2

00
2-

05
6

08
/

07
/

20
02

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CERN Document Server

https://core.ac.uk/display/25351173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

Walecka model and so can be regarded as the first-order correction to it. 

Here, we note the model developed by Zimanyi and Moszkowski (ZM) [7]. They employed the 

derivative scalar coupling ( )p Mψ ψ σ  rather than the usual one ψψσ . This model, called as the DSC 

model, is equivalent to employing a renormalized NNσ  coupling constant ( )* *
NN NNg M M gσ σ=  in the 

Walecka model. Using this, the relation between *M  and σ  is 

 * * * 21 1m M M m σ σ σ≡ = − ≈ − + , (3) 

where NNg Mσσ σ= . The third term corresponds to the scalar polarizability term in Eq. (1). The DSC 

model can reproduce the empirical incompressibility of nuclear matter in contrast to the Walecka model. 

However, it is not able to reproduce the properties of finite nuclei. Koepf et al. [8] pointed out that this 

failure is due to relatively large effective mass * 0.85m ≈  in the DSC model, compared to * 0.55m ≈  in 

the Walecka model. The small effective mass or large scalar potential is necessary for large spin-orbit 

splitting [9]. The Dirac-Brueckner-Hartree-Fock (DBHF) calculation [10] also yields rather small effect ive 

mass * 0.6m ≈ . The DSC model only produces relatively weak scalar and vector potentials. One of the 

reasons of this shortcoming may be strong renormalization of NNσ  coupling constant. It is desirable to 

take a weaker renormalization. In other words, we have to choose * *
NN NNg g mσ σ >  in the range 

*0 1m≤ ≤ . In fact, for this purpose, the hybrid derivative scalar coupling ( )* *1 1NN NNg m gσ σα = + −   

was proposed [11], where 0 1α≤ ≤  is a parameter. (A special case of 1 2α =  is investigated in Ref. 

[12].) In this case, Eq. (3) becomes 

 * 21m σ α σ≈ − + . (4) 

It is noted that α  is just the scalar polarizability sξ  in Eq. (1). Another reason of the failure of the DSC 

model is that only the NNσ  coupling constant is renormalized, but the NNω  is not so. This seems to be 

inconsistent. The reduction of both NNσ  and NNω  coupling constants at finite density is observed in 

the DBHF calculation [10]. In fact, in the appendix of Ref. [7], ZM mentioned the model using 

( )* *
NN NNg m g

α

σ σ=  and ( )* *
NN NNg m g

β

ω ω=  with 0 , 1α β≤ ≤ . The special cases, 1α = , 0.5β = , 

1α β= =  and others were studied in Ref. [13]. In this case, the effective mass, or the scalar potential, is 

also given by Eq. (4). On the other hand, the vector potential is expressed by 

 0 0v V M ω β σ ω≡ ≈ − , (5) 

where 0 0NNg Mωω ω= . The second term is just the mixed scalar-vector polarizability svξ  in Eq. (2). 
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It has been seen that the DSC model and its extensions introduce the polarizability into the Walecka 

model. However, their physical origins are obscure. Here, we note that the nucleon is dressed by meson 

cloud in the field theory of mesons and nucleon. That is, the wave function of a nucleon is renormalized. 

The Walecka model does not take into account this renormalization. In the present work, we investigate the 

effect of the meson cloud of nucleon in nuclear matter and show that the polarizabilities are due to its effect. 

In the next section, the quantum correction to the classical mean meson fields is studied and the dressed 

nucleon by meson cloud is introduced. In Section III, the wave-function renormalization of the nucleon is 

related to its anomalous magnetic moment. In Section IV, the Walecka model is generalized to the 

renormalized nucleon and the polarizability is derived. We then calculate the properties of symmetric 

nuclear matter in Section V. In the last section, we summarize the studies.  

 

II.  Dressed Nucleon by Meson Cloud in Nuclear Medium 

 Now, we consider charge symmetric nuclear matter. We suppose that the propagator of a nucleon in 

the medium satisfies the Dyson equation 

 ( ) ( ) ( ) ( )(0) (0)G p G p G p U G p= + . (6) 

Here, the potential U  does not depend on the momentum p . It is composed of the scalar and vector part: 

 0U S Vγ= + . (7) 

( )(0)G p  is the nucleon propagator in the noninteracting Fermi gas and is compose of Feynman and 

density-dependent part [1]: 

 ( ) ( ) ( )(0) (0) (0)
F DG p G p G p= + . (8) 

Then, we will investigate the quantum correction to the classical potential U . First, for simplicity, the 

following correction is studied. 

 U 

 

 ( )
( )

( ) ( ) ( )
4

42 i i i
i

d kp D k G p k U G p k
π

Γ = Λ − − Λ∑ ∫ , (9) 

where an index i indicates σ , ω , π , ρ  and other mesons, iD  (the dashed line) is the corresponding 

meson propagator and iΛ  is the bare nucleon-meson vertex. Substituting an iteration expansion of Eq. (6) 

into Eq. (9), ( )pΓ  is expanded as 
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1

n
n
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∞

=

Γ = Γ∑ , (10) 
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( )

( ) ( ) ( ) ( ) ( )
4 1 2

(0) (0) (0) (0)
( ) 42

n

n i i i
i

d kp D k G p k U G p k U G p k U G p k
π

Γ = Λ − − − − Λ∑ ∫  . (11) 

Using identities [14] 

 ( )( ) ( )2(0) (0)G p G p
p

∂
= −

∂
, (12) 

 ( ) ( ) ( )(0) 0 (0) (0)

0

G p G p G p
p

γ
∂

= −
∂

, (13) 

we have 

 ( ) ( ) ( )(0) (0) (0)

0

S V G p G p U G p
p p

 ∂ ∂
+ = −  ∂ ∂ 

. (14) 

Thus, Eq. (11) is rewritten as 

 ( ) ( ) ( )( )
0

1
!

nn

n p S V p
n p p

 − ∂ ∂
Γ = + Σ  ∂ ∂ 

, (15) 

where 

 ( )
( )

( ) ( )
4

(0)
42 i i i

i

d kp D k G p k
π

Σ = Λ − Λ∑ ∫ , (16) 

 ( ) ( )F Dp p= Σ + Σ . (17) 

( )D pΣ  is the Fock potential term and yields momentum dependence in the potential. Because our classical 

potential U  does not depend on momentum ,p  the contribution of ( )D pΣ  is neglected in the following 

investigation of this work. Then, we replace ( )pΣ  in Eq. (15) by ( )F pΣ  and renormalize it. 

Consequently, Eq. (15) reduces to 

 ( ) ( ) ( )( )
0

1
!

nn
R

n Fp S V p
n p p

 − ∂ ∂
Γ = + Σ  ∂ ∂ 

. (18) 

( )R
F pΣ  is the renormalized self-energy of a nucleon in the free space and is just the meson cloud itself. 

Therefore, the correction ( )pΓ  to the potential U  is the effect of the meson cloud. Here, it is noted that 

we do not take into account the modification of the meson cloud due to nuclear medium. It will be 

considered in the next section. 
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The relation (18) between the quantum correction to the potential and the self -energy of nucleon is 

similar to Ward identity in QED. Due to mass renormalization 

 ( ) 0R
F p M

p
=

Σ = , (19) 

and wave-function renormalization 

 ( ) 0R
F

p M

p
p

=

∂
Σ =

∂
, (20) 

( )R
F pΣ  is written around p M=  as 

 ( )
2 3 4

(2) (3) (4)
1 1 1
2 3! 4!

R
F

p M p M p M
p

M M M
ζ ζ ζ

− − −     
Σ = + + +     

     
 . (21) 

Substituting this expansion into Eq. (18) and after rearrangement,  
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 − − + − + − + − 
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 (22) 

where 

 U U M= , (23) 

 ( ) ( )n n Mζ ζ= . (24) 

Now, we take the two serious assumptions that the replacement, 

 2 3
(2) (3) (4), , , ,ζ ξ ζ ξ ζ ξ→ → →   (25) 

is possible in Eq. (22) and 

 1Uξ   (26) 

is satisfied. We expect that not all the detailed information of nucleon is necessary to describe nucleus or 

nuclear matter. An assumption (25) is thus adopted to express the effect of meson cloud by single quantity. 

In the next section, ξ  is related to the isoscalar anomalous magnetic moment of nucleon. The propriety of 

Eq. (26) will be decided by the result of the calculation of nuclear matter saturation property. Under these 

assumptions, the total potential is given by 
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 ( ),totU U p= + Γ  (27) 

 ( ) ( ) ( )11
2

U U U p M p M Uξ ξ = + − − + −  . (28) 

So far, we have studied a simplest first-order correction (9) to the potential. However, the result (28) 

is valid even for higher-order corrections. The reason is the same as the case of Ward identity in QED. It is 

easily seen that the two-loop correction (the solid line indicates ( )G p  of Eq. (6)) 

+ + 

U 

U 

U 

 

is derived from the two-loop self-energy (the solid line indicates ( )(0)
FG p  of Eq. (8)) 

 

using the Ward-like equation (18). Similarly, another two-loop correction 

U 

+ 
U + 

U 

 

is derived from the self-energy, 

 

The renormalization conditions (19) and (20) and so the expression of the self -energy (21) do not depend on 

the perturbation expansion. Thus, if the Ward-like equation (18) and the assumptions (25) and (26) are 
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satisfied, Eq. (28) is also valid even for any higher-order corrections. 

However, it is noted that Eq. (15) is true but Eq. (18) is an approximation, which is not precise when  

the internal nucleon loop graphs are taken into account. For an example, the following correction to the 

potential is considered: 

U 

 

This includes the meson self-energy ( ).i qΠ  In nuclear medium, it is given by 

 ( )
( )

( ) ( )
4

4 Tr
2

i i i
d kq G k G k q
π

Π = Λ − Λ  ∫ . (29) 

Using an iteration expansion of Dyson equation (6), we have 

 ( ) ( ) ( ) ( )(0) (1) (2)
i i i iq q q qΠ = Π + Π + Π + , (30) 

where 

 ( )
( )

( ) ( )
4

(0) (0) (0)
4 Tr

2i i i
d kq G k G k q
π

 Π = Λ − Λ ∫ , (31) 

 
( )

( )
( ) ( ) ( )

( ) ( ) ( )

4
(1) (0) (0) (0)

4

(0) (0) (0)

Tr
2

.

i i i

i i

d kq G k U G k G k q

G k G k q U G k q

π
Π = Λ − Λ

+ Λ − − Λ 

∫
 (32) 

The contributions of ( )( )n
i qΠ  ( )1,2,3n =   are just the effects of nuclear medium. Thus, ( )pΣ  in Eq. 

(15) cannot be replaced by the free self-energy ( )F pΣ  and so Eq. (18) is no longer valid. If ( )i qΠ  is 

replaced by the meson self-energy in the free space 

 ( )
( )

( ) ( )
4

(0) (0)
4 Tr

2
F
i F i F i

d kq G k G k q
π

 Π = Λ − Λ ∫ , (33) 

and is further renormalized, then the Ward-like equation (18) is recovered. We note that the differences 

between ( )i qΠ  and ( )F
i qΠ  bring the modification of meson cloud of nuclear nucleon compared with 

free nucleon. 

Because totU  of Eq. (28) includes quantum corrections, the Lagrangian of the nucleon in symmetric 
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nuclear matter is 

 ( )(0) (0) ,N totL p M Uψ ψ= − −  (34) 

 ( ) ( ) ( ) ( )(0) (0)
1 1 1
2 2

p M U p M p M U U Uψ ξ ξ ξ ψ = − + − + − − +  
. (35) 

Assuming Eq. (26), this becomes 

 ( ) ( )(0) (0)
1 11 1 1
2 2NL U p M U U Uψ ξ ξ ξ ψ

    = + − + − +        
, (36) 

 ( ) ( )( ) ( )1 2 1 2
(0) (0)1 1 1 ,U p M U U Uψ ξ ξ ξ ψ = + − + − +

 
 (37) 

 ( )1 2 1 2 1
(0) 2 2 2 (0) ,Z p M Z Z Uψ ψ− − − = − −   (38) 

where 

 1
2 1Z Uξ− = + . (39) 

Introducing a renormalized nucleon wave function Rψ  as 

 1 2
(0) 2 RZψ ψ= , (40) 

the Lagrangian is written by 

 ( )N R RL p M Uψ ψ= − − . (41) 

This is consistent to the Dyson equation (6) assumed first and is the Lagrangian for the dressed wave 

function, which is not a bare nucleon but includes the meson cloud. 

 

III.  Determination of Renormalization Constant 

In the previous section, we took an assumption (25) and introduced the quantity ξ . Here, we 

determine it from the isoscalar anomalous magnetic moment of a free nucleon and further modify it to take 

into account the effect of nuclear medium for a nuclear nucleon. The renormalized self-energy of a free 

nucleon is generally given by 

 ( ) ( ) ( ) ( )2 2 2 2R
F p p M a p M M b p MΣ = − + , (42) 

where a  and b  are functions of 2 2 .p M  The mass renormalization condition (19) becomes 

 ( )1 0b = , (43) 

and the wave function renormalization condition (20) is 

 ( ) ( )1 2 1 0a b′+ = . (44) 
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The previously used self-energy (21) has the same form as Eq. (42) if ( )2 2a p M  and ( )2 2b p M  are 

expanded around 2 2p M= ; 

 
2 2 2

0 12 2

p p Ma a a
M M

  −
= + + 

 
 , (45) 

 
2 2 2

0 12 2

p p Mb b b
M M

  −
= + + 

 
 . (46) 

Using an identity 

 ( ) ( ) ( )2 2 2 2p M p M M p M− = − − − , (47) 

the expansion coefficients in Eq. (45) are given by 

 ( ) ( ) ( ) ( )2 3 4
0 (2) (3) (4) (5)

1 1 1 12 2 2 2
2 3! 4! 5!

a ζ ζ ζ ζ= − + − + − + − + , (48) 

 ( ) ( ) ( )2 3
1 (3) (4) (5) (6)

1 1 1 12 2 3 2 4 2
3! 4! 5! 6!

a ζ ζ ζ ζ= + − + − + − + . (49) 

On the other hand, the coefficients in Eq. (46) are given by the renormalization conditions, 

 0 0b = , (50) 

 0 12 0a b+ = . (51) 

Here, assuming Eq. (25), Eq. (48) becomes 

 ( ) ( )0exp 2 2 1 1aξ ξ− + + = . (52) 

If 1ξ  , this has a trivial solution 0ξ =  and a nontrivial one, 

 ( )2 2
0 1a a p Mξ ≈ − = − = . (53) 

Therefore, once a value of 0a  is given, the value of ξ  is determined. 

Then, we determine 0a  by means of the Ward-Takahashi identity for the isoscalar current R
µϒ  of a 

free nucleon, 

 ( ) ( ) ( ) ( )1 1, R R
R F Fp p p p G p G pµ

µ

− −′ ′ ′− ϒ = − , (54) 

where 

 ( ) ( )1R R
F FG p p M p− = − − Σ . (55) 

Differentiating Eq. (54) by pµ  and pµ′  and then taking the difference between them, we have 
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 ( ) ( ) ( ) ( )1 1 1, ,
2 2 2

R R
R R F Fp p q p p p p

p p p p
µ µ µ

ν
µ µ µ µ

γ
 ∂ ∂ ∂ ∂′ ′ ′ϒ + − ϒ = − Σ − Σ  ′ ′∂ ∂ ∂ ∂ 

, (56) 

where q p pµ µ µ′= − . From Eq. (42), 

 ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ2 2R
Fp p a p p M p a p M p b p Mµ µ µ

µ γ ′ ′∂ ∂ Σ = + − + , (57) 

where 2 2 2ˆ .p p M=  On the mass shell, this becomes 

 ( ) ( ) ( ) ( )1 2 1R
Fp p a p b Mµ µ

µ γ ′∂ ∂ Σ = + . (58) 

Then, using the renormalization condition (51), the RHS of Eq. (56) becomes 

 ( )( ) ( ) ( )1RHS of Eq. (56) 1 1 1
2

a p p a
M

µ µ µγ ′= − + + . (59) 

On the other hand, we use the phenomenological current for the LHS of Eq. (56): 

 ( ) ( ) ( ) ( )2 2
1 2, 2R p p F q iF q q Mµ µ µν

νγ σ′ϒ = + . (60) 

Using the Gordon decomposition, and under an approximation 2 2 1q M  , this becomes 

 ( ) ( )( ) ( ) ( )2 2
1, 1 0 0

2R p p F p p F
M

µ µ µ µγ′ ′ϒ + − + . (61) 

Therefore, the second term in the LHS of Eq. (56) vanishes. Comparing between Eqs. (59) and (61), we 

obtain 

 ( ) ( ) ( )0 21 0 0.12p na a F µ µ= = − = − ∆ + ∆ = , (62) 

where ( )p nµ∆  is the anomalous magnetic moment of a proton (neutron). As a result, Eq. (53) leads to  

 0.12p nξ µ µ≈ ∆ + ∆ = − . (63) 

 Next, we have to consider the effect of nuclear medium on the meson cloud. Equation (63) suggests 

that this can be done by the following replacement, 

 * * *
p nξ ξ µ µ→ ≈ ∆ + ∆ , (64) 

where *
( )p nµ∆  is the anomalous magnetic moment of the nuclear nucleon. So as to estimate this quantity, 

we remember that the magnetic moment of a free nucleon can be simply explained by the constituent quark 

picture. The mass of the nuclear nucleon is reduced by the scalar potential S , 

 * *M M S m M= + = , (65) 

and thus, the masses of its constituent u  and d  quarks are 

 * *
( ) ( )u d u dM m M= . (66) 
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This means that the magnetic moment of a nuclear nucleon is 

 * *
( ) ( )p n p n mµ µ= . (67) 

Because its Dirac part is given by 

 ( )*
3 * *

1 1
2 2

D
D

e
M m

µ
µ τ= + = , (68) 

its anomalous part also becomes 

 * *
( ) ( )p n p n mµ µ∆ = ∆ . (69) 

Consequently, the precise value of *ξ  is a nontrivial solution ( )0≠  of the following equation as Eq. (52), 

 ( ) ( )* * * *exp 2 2 1 1p nξ µ µ ξ − + − ∆ + ∆ =  . (70) 

In the next section, we will treat *ξ  as a parameter in solving the self-consistent equation of *m . The 

value of *ξ  is determined to reproduce the nuclear matter saturation property. Then, we will calculate  

 
( )* *

* *
*

exp 2 2 1
2p n

ξ ξ
µ µ

ξ

− + −
∆ + ∆ = , (71) 

and compare 

 ( )* * *
p n p nmµ µ µ µ∆ + ∆ = ∆ + ∆  (72) 

with its experimental value 0.12− . 

Finally, we want to mention the meaning of the approximation (25) again. It has ensured the 

convergence of the RHS of Eq. (48) and so has related ξ  to 0a . We have only used this 0a  in R
FΣ , 

which is related to the anomalous magnetic moment by means of Ward-Takahashi identity. Other quantities 

0b  and 1b  in R
FΣ  disappear due to the renormalization conditions. The higher order quantities 1a , 2a , 

2b , etc. are not concerned. Therefore, we can see that the approximation (25) is just the prescription to 

ensure the convergence of the perturbation expansion and to extract the single physical quantity from R
FΣ . 

 

IV.  Modified Walecka Model for Dressed Nucleon 

Here, based of the results of the preceding sections, we will extend the Walecka model for symmetric 

nuclear matter to take into account the effect of the meson cloud. In the Walecka model, the Lagrangian is 

for a bare nucleon expressed by an unrenormalized wave function (0)ψ , 

 ( )0
(0) 0 0 (0)

W
NL p M S Vψ γ ψ= − − − . (73) 
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The scalar and vector potentials are given by the mean fields of the σ  and ω  mesons: 

 0 0NNS g σ σ= − , (74) 

 0 0 0NNV g ω ω= , (75) 

where ( )NNg σ ω  is the nucleon ( )σ ω -meson coupling constant. However, our desired Lagrangian should 

be for the dressed nucleon surrounded by meson cloud. It is expressed by a renormalized wave function Rψ  

as (See Eq. (41).) 

 ( )0R
N R RL p M S Vψ γ ψ= − − − . (76) 

In order to introduce the renormalized wave function Rψ  in place of the unrenormalized one (0)ψ , we 

should remember Eq. (38). In analogy to the counter term contribution to the wave function renormalization, 

we modify the Walecka Lagrangian (73) as follows: 

 ( )1 2 1 2
2 2p M Z p M Z− −− → − . (77) 

Then, using Eq. (40), the renormalized Walecka Lagrangian is 

 ( )1 2 1 2 0
(0) 2 2 0 0 (0)

RW
NL Z p M Z S Vψ γ ψ− − = − − −   (78) 

 ( )0
2 0 0 .R Rp M Z S Vψ γ ψ = − − +   (79) 

Defining the renormalized potential by 

 ( )0 0
2 0 0S V Z S Vγ γ+ = + , (80) 

Eq. (79) can be regarded as our expected Lagrangian (76). The renormalization constant 2Z  is given by Eq. 

(39), 

 ( )1 0
2 1Z s vη γ− = − + , (81) 

where S s M= , V v M=  and *η ξ= − . (The quantity ξ  in Eq. (39) is replaced by *ξ  according to 

Eq. (64).) Although *ξ  is determined by Eq. (70), we will treat η  as a parameter in the following. 

Substituting Eq. (81) into Eq. (80), we have 

 ( )2 2
0s s s vη= + + , (82) 

 0 2v v s vη= + , (83) 

where 0 0S s M=  and 0 0V v M= . Up to the second order of 0s σ= −  and 0 0v ω= , these are 

 ( )2 2
0s σ η σ ω= − + + , (84) 
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 0 02v ω ησ ω= − . (85) 

The second and third term of Eq. (84) and the second term of Eq. (85) are just the scalar polarizability, 

vector polarizability and the mixed scalar-vector polarizability in Eqs. (1) and (2), respectively. (In the 

present theory, the term proportional to 2 2σp  in Eq. (2) comes from the so-called Z-graph contribution 

[15] and the polarizability pξ  does not appear.) 

Since 

 1, 1s vη η  , (86) 

have been assumed in Eq. (26), the relations 

 2 21, 1s vη η  , (87) 

are also satisfied. Then, we assume 2 2v sη η≈  or approximate Eq. (82) as 

 2
0 2s s sη= + . (88) 

As a result, the vector polarizability seems to disappear. Equation (88) is rewritten as  

 
( )

0
*1 1

SS
mλ

=
+ −

, (89) 

where 2λ η=  and Eq. (65) has been used. According to Eq. (74), we can define the renormalized nucleon 

σ -meson coupling constant by 

 
0

R
NNS g σ σ= − . (90) 

It is given by 

 
( )*1 1

R NN
NN

gg
m

σ
σ λ

=
+ −

, (91) 

 ( ) *1 NNm g σλ λ ≈ − +  . (92) 

The result (92) is just the hybrid derivative scalar coupling of Ref. [11]. Similarly, we define the 

renormalized nucleon ω -meson coupling constant R
NNg ω  by 

 
( )

0
0 0*1 1

R
NN

VV g
m ω ω

λ
= =

+ −
, (93) 

 
( )*1 1

R NN
NN

gg
m

ω
ω λ

=
+ −

, (94) 

 ( ) *1 .NNm g ωλ λ ≈ − +   (95) 
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Therefore, a relation 

 
R R
NN NN

NN NN

g g
g g

σ ω

σ ω

=  (96) 

is satisfied. The Walecka model corresponds to the case of 0λ = . On the other hand, the DSC model 

corresponds to the case in which the scalar coupling is renormalized by Eq. (92) with 1λ =  but the vector 

coupling is not renormalized ( 0λ =  in Eq. (95)). Thus, the relation (96) is not satisfied and this is one of 

the reasons of the failure of the DSC model. 

Consequently, our model Lagrangian has the same form as the Walecka Lagrangian except for the 

renormalized nucleon ( )σ ω -meson coupling constant (92)((95)): 

 ( ) 2 22 2 0
0 0

1 1
2 2

RW R R
NN NNL p M m m g gσ ω σ ωψ ψ σ ω σ ψ ψ ω ψ γ ψ= − − + + − , (97) 

where subscripts R  and 0  are omitted. The σ  and ω  mean-field, σ  and 0ω , are expressed in 

terms of *m  and v  through Eqs. (90) and (93). Then, we have the energy-per-particle W  for symmetric 

nuclear matter written in units of M  as 

 
( ) ( )

2* * 2*
*

1 1 1 ˆ1 1 1
ˆ2 21 1

k
v

s

EW m C m
M M C m

λ ρ
ρ λ

 −   = + + − − − − −  
, (98) 

where *
kE  is the average kinetic energy, (0)ˆ v vρ ρ ρ=  with the vector density vρ  and the nuclear 

matter saturation density (0)
vρ . ( )s vC  are defined by 

 
2 (0)

( )
( ) 2

( )

NN v
s v

g
C

m M
σ ω

σ ω

ρ
≡ . (99) 

These are determined to fulfill the saturation condition, 

 
ˆ 1

ˆ 0W
ρ

ρ
=

∂ ∂ = , (100) 

 ( )0 ˆ 1 15.75 MeVW W ρ≡ = = − , (101) 

at the Fermi momentum 11.30fmFk −= . The results are 

 
( )

2
*
0

*
0

(0)*
*

0 0 (0)

1
1 1

1
2

s
sF

v

m
m

C
Ev m
M

λ

ρ
ρ

 −
 

− −  =
 

+ − 
 

, (102) 
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( )

0
2*

01 1
v

vC
mλ

=
 − − 

, (103) 

where *
FE  is the Fermi surface energy of nuclear matter, (0)

sρ  is the scalar density at saturation, 0v  is 

given by 

 *
0 01 Fv W M E M= + − . (104) 

The renormalized mass *
0m  at saturation is determined by the self-consistency equation *

ˆ 1
0W m

ρ =
∂ ∂ = , 

which is written explicitly as 

 ( ) ( ) ( )
(0) (0)*

* * * 0
0 0 0 0(0) (0) *

0

1 1 1 1 0
2 1 1

s sF

v v

vE m v m m
M m

ρ ρ λ
λ

ρ ρ λ

      − + − − − − + =    − −    
. (105) 

 

V.  Calculations and Analyses 

Here, we calculate the properties of symmetric nuclear matter according to the previous section. First, 

Fig. 1 shows the effective mass *m  as functions of density. The renormalization constant λ  is treated as 

a parameter. For example, we choose 0.0λ = , 0.35 , 0.7  and 1.0 . The result using 0λ =  

corresponds to the Walecka model. The effective mass becomes larger as λ  increases. As mentioned in 

Introduction, * 0.6m ≈  is favorable at saturation density (0) 1v vρ ρ = . Thus, large value of 0.7λ ≥  

seems to be not suitable. To see this more clearly, Fig. 2 shows the scalar potential at saturation as a 

function of λ . The value 0.3 0.4λ≤ ≤  seems to be appropriate for 375 MeVS ≈ −  corresponding to 

* 0.6m ≈ . Consequently, the value of λ  is severely restricted. This is because the scalar potential S  is 

relatively sensitive to λ . The vector potential V  is also sensitive to λ  as shown in Fig. 3. 

Next, we calculate the energy-per-particle W , Eq. (98), as functions of density in Fig. 4. It is seen 

that the slopes of the curves at ˆ1 ρ≤  becomes gentle as λ  increases. This implies that the 

incompressibility becomes smaller as λ  increases. Then, in Fig. 5, we show the nuclear matter 

incompressibility vK  as a function of .λ  It is difficult to determine vK  uniquely from empirical data 

and so there is large uncertainty in its value in the literature [16]. Assuming 200 MeV 300 MeV,vK≤ ≤  

λ  is restricted into the region 0.3 0.7λ< < . However, this allowed range of λ  is too large to determine 

it uniquely. On the other hand, Pearson [17] pointed out that the correlation between vK  and CoulK , the 

Coulomb coefficient in the leptodermous expansion of the incompressibility, is rather uniquely determined 

from breathing-mode data. Thus, we further calculate vK - CoulK  correlation in Fig. 6. The shaded area is 
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the breathing-mode data in Ref. [17]. The circles indicate the results using 0.0 1.0λ =   and the triangle 

indicates the result of 0.35.λ =  It is seen that only the results using 0.2 0.35λ≤ ≤  can cross the shaded 

band. Taking into account the above analyses of *m  and vK , we can conclude that the renormalization 

constant is uniquely determined to 0.35λ ≈ . It has also been found that the combination of vK  and vK -

CoulK  correlation is quite useful to determine the value of λ . The obtained value prefers large 

incompressibility 300 MeVvK ≈ . In the following table, we summarize the values of the scalar and vector 

coupling constants, ( ) ( )2 4NNg σ π  and ( ) ( )2 4NNg ω π , the effective mass *m  at saturation, the scalar 

S  and vector V  potentials at saturation, the incompressibility vK  and the Coulomb coefficient CoulK  

for various values of λ . 

 

λ  ( )2

4
NNg σ

π
 

( )2

4
NNg ω

π
 *m  S (MeV) V (MeV) vK (MeV) CoulK (MeV) 

0.0  9.76  15.1 0.541  431−  354  547  80.8−  

0.35  11.4  17.4  0.603  372−  301 293  32.5−  

0.7  12.3  17.9  0.667  312−  246  193  45.3−  

1.0  12.2  17.1 0.715  267−  204  155  68.2−  

 

Although λ  has been treated as a parameter in the above calculations, it is related to the isoscalar 

anomalous magnetic moment of a free nucleon according to Eqs. (71) and (72). Thus, we calculate the 

anomalous moment using 0.35λ =  and * 0.603m =  that are most appropriate values to the saturation 

properties as shown above. If the experimental value is reproduced, ( )*2 2λ η ξ= = −  is not a 

phenomenological parameter but has a physical meaning. The result, 

 0.119p nµ µ∆ + ∆ = − , (106) 

remarkably agrees with the experimental value 0.120− . This perfect agreement is somewhat accidental 

because of uncertainty of nuclear matter saturation properties. However, it strongly supports that the effect 

of meson cloud is important to nuclear matter properties. Finally, we have to estimate the assumption Eq. 

(26) (or Eq. (86)). Because 

 0.175 0.4 0.07sη = × = , (107) 

our assumption is consistent. 
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VI. Summary 

We have developed the modified Walecka model with the renormalized NNσ  and NNω  

coupling constants that incorporate the polarizabilities of nucleon by the mean meson fields. They are 

theoretically derived from the quantum corrections to the mean-fields, which are just the effects of meson 

cloud of nucleon. Why does the meson cloud affect nuclear matter properties? As expressed by the Ward-

like equation (18), this is because it couples to the mean scalar and vector fields in nuclear medium. In this 

respect, Birse [6] suggested that the polarizability is the response of the nucleon ’s structure to pushing in the 

presence of the meson fields, based on a nontopological soliton model. Of course, such a coupling must 

cause the change of meson cloud itself in the medium. In order to estimate this change, we first related the 

wave function renormalization 2Z  to the isoscalar anomalous magnetic moment of the free nucleon using 

Ward-Takahashi identity. Then, we determined that of nuclear nucleon using a naive quark picture. This 

prescription may suggest an essential limitation of the interacting meson-nucleon field theory in which the 

nucleon is treated as an elementary point particle. The efforts to develop the consistent theory of nuclear 

matter based on the quark model [18] are also necessary. However, our numerical results reproduce nuclear 

matter saturation properties well and overcome all the problems in the previous models. It indicates that the 

effect of meson cloud is really important to nuclear matter saturation properties.  
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Figure 1. The density dependencies of the effective nucleon mass * *m M M= . The dotted, solid, dashed 

and dot-dashed curves are the calculations using 0.0λ = , 0.35 , 0.7  and 1.0 , respectively. 
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Figure 2. The scalar potential S  at saturation density as a function of λ . The dashed line indicates 

375 MeVS = −  corresponding to * 0.6m = . 
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Figure 3. The same as Fig. 2 but for the vector potential V . 
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Figure 4. The same as Fig. 1 but for the energy-per-particle W . 
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Figure 5. The same as Fig. 2 but for the incompressibility vK . 
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Figure 6. The vK - CoulK  correlation. The shaded band is the breathing-mode data in Ref. [17]. The open 

circles are the calculational results using 0.0 1.0λ =   and the triangle is the result using 0.35λ = . 

 


