572 research outputs found

    Quantum Entanglement of Moving Bodies

    Full text link
    We study the properties of quantum information and quantum entanglement in moving frames. We show that the entanglement between the spins and the momenta of two particles can be interchanged under a Lorentz transformation, so that a pair of particles that is entangled in spin but not momentum in one reference frame, may, in another frame, be entangled in momentum at the expense of spin-entanglement. Similarly, entanglement between momenta may be transferred to spin under a Lorentz transformation. While spin and momentum entanglement each is not Lorentz invariant, the joint entanglement of the wave function is.Comment: 4 pages, 2 figures. An error was corrected in the numerical data and hence the discussion of the data was changed. Also, references were added. Another example was added to the pape

    Geostationary Coastal and Air Pollution Events (GeoCAPE) Wide Angle Spectrometer (WAS)

    Get PDF
    The GeoCAPE Wide Angle Spectrometer (WAS) Study was a revisit of the COEDI Study from 2012. The customer primary goals were to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Riding on a commercial GEO satellite minimizes total mission costs. For this study, it is desired to increase the coverage rate,km2min, while maintaining ground sample size, 375m, and spectral resolution, 0.4-0.5nm native resolution. To be able to do this, the IFOV was significantly increased, hence the wide angle moniker. The field of view for COEDI was +0.6 degrees or (2048) 375m ground pixels. The WAS Threshold (the IDL study baseline design) is +2.4 degrees IDL study baseline design) is +2.4 degrees

    Anchors aweigh: the sources, variety, and challenges of mission drift

    Get PDF
    The growing number of studies which reference the concept of mission drift imply that such drift is an undesirable strategic outcome related to inconsistent organizational action, yet beyond such references little is known about how mission drift occurs, how it impacts organizations, and how organizations should respond. Existing management theory more broadly offers initial albeit equivocal insight for understanding mission drift. On the one hand, prior studies have argued that inconsistent or divergent action can lead to weakened stakeholder commitment and reputational damage. On the other hand, scholars have suggested that because environments are complex and dynamic, such action is necessary for ensuring organizational adaptation and thus survival. In this study, we offer a theory of mission drift that unpacks its origin, clarifies its variety, and specifies how organizations might respond to external perceptions of mission drift. The resulting conceptual model addresses the aforementioned theoretical tension and offers novel insight into the relationship between organizational actions and identity

    Factive Scientific Understanding Without Accurate Representation

    Get PDF
    This paper analyzes two ways idealized biological models produce factive scientific understanding. I then argue that models can provide factive scientific understanding of a phenomenon without providing an accurate representation of the (difference-making) features of their real-world target system(s). My analysis of these cases also suggests that the debate over scientific realism needs to investigate the factive scientific understanding produced by scientists’ use of idealized models rather than the accuracy of scientific models themselves

    Updated International Tuberous Sclerosis Complex Diagnostic Criteria and Surveillance and Management Recommendations

    Get PDF
    Background: Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disease affecting multiple body systems with wide variability in presentation. In 2013, Pediatric Neurology published articles outlining updated diagnostic criteria and recommendations for surveillance and management of disease manifestations. Advances in knowledge and approvals of new therapies necessitated a revision of those criteria and recommendations. Methods: Chairs and working group cochairs from the 2012 International TSC Consensus Group were invited to meet face-to-face over two days at the 2018 World TSC Conference on July 25 and 26 in Dallas, TX, USA. Before the meeting, working group cochairs worked with group members via e-mail and telephone to (1) review TSC literature since the 2013 publication, (2) confirm or amend prior recommendations, and (3) provide new recommendations as required. Results: Only two changes were made to clinical diagnostic criteria reported in 2013: “multiple cortical tubers and/or radial migration lines” replaced the more general term “cortical dysplasias,” and sclerotic bone lesions were reinstated as a minor criterion. Genetic diagnostic criteria were reaffirmed, including highlighting recent findings that some individuals with TSC are genetically mosaic for variants in TSC1 or TSC2. Changes to surveillance and management criteria largely reflected increased emphasis on early screening for electroencephalographic abnormalities, enhanced surveillance and management of TSC-associated neuropsychiatric disorders, and new medication approvals. Conclusions: Updated TSC diagnostic criteria and surveillance and management recommendations presented here should provide an improved framework for optimal care of those living with TSC and their families

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication
    corecore