886 research outputs found

    Tension fatigue analysis and life prediction for composite laminates

    Get PDF
    A tension fatigue life prediction methodology for composite laminates is presented. Tension fatigue tests were conducted on quasi-isotropic and orthotropic glass epoxy, graphite epoxy, and glass/graphite epoxy hybrid laminates. Edge delamination onset data were used to generate plots of strain energy release rate as a function of cycles to delamination onset. These plots were then used along with strain energy release rate analyses of delaminations initiating at matrix cracks to predict local delamination onset. Stiffness loss was measured experimentally to account for the accumulation of matrix cracks and for delamination growth. Fatigue failure was predicted by comparing the increase in global strain resulting from stiffness loss to the decrease in laminate failure strain resulting from delaminations forming at matrix cracks through the laminate thickness. Good agreement between measured and predicted lives indicated that the through-thickness damage accumulation model can accurately describe fatigue failure for laminates where the delamination onset behavior in fatigue is well characterized, and stiffness loss can be monitored in real time to account for damage growth

    Ursodeoxycholic acid improves bilirubin but not albumin in primary biliary cirrhosis: further evidence for nonefficacy.

    Get PDF
    BACKGROUND/AIM: In randomised controlled trials (RCTs) of ursodeoxycholic acid (UDCA), although serum bilirubin is frequently reduced, its effect on disease progression and mortality is unclear. As serum albumin is an established independent prognostic marker, one might expect less deterioration of serum albumin values in a UDCA-treated group. We therefore modelled the typical evolution of serum bilirubin and albumin levels over time in UDCA-untreated patients and compared it with the observed levels in UDCA RCTs. METHODS: Multilevel modelling was used to relate the evolution of serum albumin to serum bilirubin and time since patient referral. For each considered RCT, the derived model was used to predict the relationship between final mean serum albumin and bilirubin concentration, adjusted for mean serum albumin at referral and followup duration. RESULTS: Five RCTs were eligible in terms of available data, of which two had long followup. In all trials, serum albumin did not significantly differ between UDCA- and placebo-treated patients, despite the UDCA effect on serum bilirubin. Therefore, there is no evidence over time for changes or maintenance of albumin levels for UDCA-treated patients above the levels predicted for placebo-treated patients. CONCLUSIONS: Our findings suggest that UDCA does not alter serum albumin in a way that is consistent with its effect on serum bilirubin. Therefore, reductions in serum bilirubin of UDCA-treated PBC do not parallel another validated and independent prognostic marker, further questioning the validity of serum bilirubin reduction with UDCA as a surrogate therapeutic marker

    Imaging Venous Angiomas

    Full text link
    Chapter A2.3 discusses non‐invasive cerebral venous imaging for those patients thought to have venous angiomas using Magnetic Resonance Venography (MRV) and MRI. Use of specific protocols is described.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/145264/1/cpmia0203.pd

    Physical signatures of discontinuities of the time-dependent exchange-correlation potential

    Get PDF
    The exact exchange-correlation (XC) potential in time-dependent density-functional theory (TDDFT) is known to develop steps and discontinuities upon change of the particle number in spatially confined regions or isolated subsystems. We demonstrate that the self-interaction corrected adiabatic local-density approximation for the XC potential has this property, using the example of electron loss of a model quantum well system. We then study the influence of the XC potential discontinuity in a real-time simulation of a dissociation process of an asymmetric double quantum well system, and show that it dramatically affects the population of the resulting isolated single quantum wells. This indicates the importance of a proper account of the discontinuities in TDDFT descriptions of ionization, dissociation or charge transfer processes.Comment: 17 pages, 6 figure

    Primary Biliary Cirrhosis Associated with Systemic Sclerosis: Diagnostic and Clinical Challenges

    Get PDF
    Patients with primary biliary cirrhosis (PBC) often have concurrent limited systemic sclerosis (SSc). Conversely, up to one-fourth of SSc patients are positive for PBC-specific antimitochondrial antibodies (AMA). The mechanisms responsible for the co-occurrence of these diseases are largely unknown. Genetic, epigenetic, environmental, and infectious factors appear to be important for the pathogenesis of the disease, but the hierarchy of events are not well defined. Patients with SSc and PBC have an increased morbidity and mortality compared with the general population, but whether the presence of both diseases in an affected individual worsens the prognosis and/or outcome of either disease is not clear. Some case reports suggested that the presence of SSc in PBC patents is associated with a more favorable prognosis of the liver disease, whereas others report an increased mortality in patients with PBC and SSc compared to patients with PBC alone. This paper discusses the features of patients with PBC-associated SSc. Our aims are to clarify some of the pathogenetic, diagnostic, and clinical challenges that are currently faced in the routine management of these patients. We also intend to provide some practical hints for practitioners that will assist in the early identification of patients with PBC-associated SSc

    MYCN Amplification, along with Wild-Type RB1 Expression, Enhances CDK4/6 Inhibitors’ Efficacy in Neuroblastoma Cells

    Get PDF
    Neuroblastoma (NB) is one of the primary causes of death for pediatric malignancies. Given the high heterogeneity in NB's mutation landscape, optimizing individualized therapies is still challenging. In the context of genomic alterations, MYCN amplification is the most correlated event with poor outcomes. MYCN is involved in the regulation of several cellular mechanisms, including cell cycle. Thus, studying the influence of MYCN overexpression in the G1/S transition checkpoint of the cell cycle may unveil novel druggable targets for the development of personalized therapeutical approaches. Here, we show that high expression of E2F3 and MYCN correlate with poor prognosis in NB despite the RB1 mRNA levels. Moreover, we demonstrate through luciferase reporter assays that MYCN bypasses RB function by incrementing E2F3-responsive promoter activity. We showed that MYCN overexpression leads to RB inactivation by inducing RB hyperphosphorylation during the G1 phase through cell cycle synchronization experiments. Moreover, we generated two MYCN-amplified NB cell lines conditionally knockdown (cKD) for the RB1 gene through a CRISPRi approach. Indeed, RB KD did not affect cell proliferation, whereas cell proliferation was strongly influenced when a non-phosphorylatable RB mutant was expressed. This finding revealed the dispensable role of RB in regulating MYCN-amplified NB's cell cycle. The described genetic interaction between MYCN and RB1 provides the rationale for using cyclin/CDK complexes inhibitors in NBs carrying MYCN amplification and relatively high levels of RB1 expression

    Anelastic spectroscopy study of the spin-glass and cluster spin-glass phases of La2x_{2-x}Srx_{x}CuO4_{4} (0.015<x<0.03)(0.015<x<0.03)

    Full text link
    The anelastic spectra of La2x_{2-x}Srx_{x}CuO4_{4} have been measured at liquid He temperatures slightly below and above the concentration xc0.02% x_{c}\simeq 0.02 which is considered to separate the spin-glass phase from the cluster spin-glass (CSG) phase. For xxcx\le x_{c} all the elastic energy loss functions show a step below the temperature Tg(x=0.02)T_{g}(x=0.02) of freezing into the CSG state, similarly to what found in samples well within the CSG phase, but with a smaller amplitude. The excess dissipation in the CSG state is attributed to the motion of the domain walls between the clusters of antiferromagnetically correlated spin. These results are in agreement with the recent proposal, based on inelastic neutron scattering, of an electronic phase separation between regions with x0x\sim 0 and x0.02x\sim 0.02, at least for x>0.015x>0.015Comment: 5 pages, 3 figures, submitted to Phys. Rev.

    A magnetization and 11^{11}B NMR study of Mg1x_{1-x}Alx_xB2_2 superconductors

    Full text link
    We demonstrate for the first time the magnetic field distribution of the pure vortex state in lightly doped Mg1x_{1-x}Alx_xB2_2 (x0.025x\leq 0.025) powder samples, by using 11^{11}B NMR in magnetic fields of 23.5 and 47 kOe. The magnetic field distribution at T=5 K is Al-doping dependent, revealing a considerable decrease of anisotropy in respect to pure MgB2_2. This result correlates nicely with magnetization measurements and is consistent with σ\sigma-band hole driven superconductivity for MgB2_2

    Dynamics of the Local Moment Induced by Nonmagnetic Defects in Cuprates

    Full text link
    We present a study of the spin dynamics of magnetic defects induced by Li substitution of the plane Cu in the normal state of YBa2_2Cu3_3O6+x_{6+x}. The fluctuations of the coupled Cu magnetic moments in the vicinity of Li are probed by near-neighbour 89^{89}Y {\it and} 7^7Li NMR spin lattice relaxation. The data indicates that the magnetic perturbation fluctuates as a single entity with a correlation time τ\tau which scales with the local static susceptibility. This behaviour is reminiscent of the low TT Kondo state of magnetic impurities in conventional metals. Surprisingly it extends well above the ``Kondo'' temperature for the underdoped pseudogapped case.Comment: 4 pages, 5 figures (same), major modifications to text, accepted in PR
    corecore