2,409 research outputs found
Information transfer in signaling pathways : a study using coupled simulated and experimental data
Background: The topology of signaling cascades has been studied in quite some detail. However, how information is processed exactly is still relatively unknown. Since quite diverse information has to be transported by one and the same signaling cascade (e.g. in case of different agonists), it is clear that the underlying mechanism is more complex than a simple binary switch which relies on the
mere presence or absence of a particular species. Therefore, finding means to analyze the information transferred will help in deciphering how information is processed exactly in the cell. Using the information-theoretic measure transfer entropy, we studied the properties of information transfer in an example case, namely calcium signaling under different cellular
conditions. Transfer entropy is an asymmetric and dynamic measure of the dependence of two (nonlinear) stochastic processes. We used calcium signaling since it is a well-studied example of complex cellular signaling. It has been suggested that specific information is encoded in the
amplitude, frequency and waveform of the oscillatory Ca2+-signal.
Results: We set up a computational framework to study information transfer, e.g. for calcium
signaling at different levels of activation and different particle numbers in the system. We stochastically coupled simulated and experimentally measured calcium signals to simulated target proteins and used kernel density methods to estimate the transfer entropy from these bivariate
time series. We found that, most of the time, the transfer entropy increases with increasing particle numbers. In systems with only few particles, faithful information transfer is hampered by random fluctuations. The transfer entropy also seems to be slightly correlated to the complexity (spiking, bursting or irregular oscillations) of the signal. Finally, we discuss a number of peculiarities of our approach in detail.
Conclusion: This study presents the first application of transfer entropy to biochemical signaling pathways. We could quantify the information transferred from simulated/experimentally measured calcium signals to a target enzyme under different cellular conditions. Our approach, comprising stochastic coupling and using the information-theoretic measure transfer entropy, could also be a valuable tool for the analysis of other signaling pathways
GdRhSi: An exemplary tetragonal system for antiferromagnetic order with weak in-plane anisotropy
The anisotropy of magnetic properties commonly is introduced in textbooks
using the case of an antiferromagnetic system with Ising type anisotropy. This
model presents huge anisotropic magnetization and a pronounced metamagnetic
transition and is well-known and well-documented both, in experiments and
theory. In contrast, the case of an antiferromagnetic - system with weak
in-plane anisotropy is only poorly documented. We studied the anisotropic
magnetization of the compound GdRhSi and found that it is a perfect
model system for such a weak-anisotropy setting because the Gd ions in
GdRhSi have a pure spin moment of S=7/2 which orders in a simple AFM
structure with . We observed experimentally in a
continuous spin-flop transition and domain effects for field applied along the
- and the -direction, respectively. We applied a mean field model
for the free energy to describe our data and combine it with an Ising chain
model to account for domain effects. Our calculations reproduce the
experimental data very well. In addition, we performed magnetic X-ray
scattering and X-ray magnetic circular dichroism measurements, which confirm
the AFM propagation vector to be and indicate the absence of
polarization on the rhodium atoms
Information transfer in signaling pathways : a study using coupled simulated and experimental data
Background: The topology of signaling cascades has been studied in quite some detail. However, how information is processed exactly is still relatively unknown. Since quite diverse information has to be transported by one and the same signaling cascade (e.g. in case of different agonists), it is clear that the underlying mechanism is more complex than a simple binary switch which relies on the
mere presence or absence of a particular species. Therefore, finding means to analyze the information transferred will help in deciphering how information is processed exactly in the cell. Using the information-theoretic measure transfer entropy, we studied the properties of information transfer in an example case, namely calcium signaling under different cellular
conditions. Transfer entropy is an asymmetric and dynamic measure of the dependence of two (nonlinear) stochastic processes. We used calcium signaling since it is a well-studied example of complex cellular signaling. It has been suggested that specific information is encoded in the
amplitude, frequency and waveform of the oscillatory Ca2+-signal.
Results: We set up a computational framework to study information transfer, e.g. for calcium
signaling at different levels of activation and different particle numbers in the system. We stochastically coupled simulated and experimentally measured calcium signals to simulated target proteins and used kernel density methods to estimate the transfer entropy from these bivariate
time series. We found that, most of the time, the transfer entropy increases with increasing particle numbers. In systems with only few particles, faithful information transfer is hampered by random fluctuations. The transfer entropy also seems to be slightly correlated to the complexity (spiking, bursting or irregular oscillations) of the signal. Finally, we discuss a number of peculiarities of our approach in detail.
Conclusion: This study presents the first application of transfer entropy to biochemical signaling pathways. We could quantify the information transferred from simulated/experimentally measured calcium signals to a target enzyme under different cellular conditions. Our approach, comprising stochastic coupling and using the information-theoretic measure transfer entropy, could also be a valuable tool for the analysis of other signaling pathways
Paramagnon dispersion in -FeSe observed by Fe -edge resonant inelastic x-ray scattering
We report an Fe -edge resonant inelastic x-ray scattering (RIXS) study of
the unusual superconductor -FeSe. The high energy resolution of this
RIXS experiment (55meV FWHM) made it possible to resolve
low-energy excitations of the Fe manifold. These include a broad peak
which shows dispersive trends between 100-200meV along the and
directions of the one-Fe square reciprocal lattice, and which can
be attributed to paramagnon excitations. The multi-band valence state of FeSe
is among the most metallic in which such excitations have been discerned by
soft x-ray RIXS
Transition from stochastic to deterministic behavior in calcium oscillations
Simulation and modeling is becoming more and more important when studying complex biochemical systems. Most often, ordinary differential equations are employed for this purpose. However, these are only applicable when the numbers of participating molecules in the biochemical systems are large enough to be treated as concentrations. For smaller systems, stochastic simulations on discrete particle basis are more accurate. Unfortunately, there are no general rules for determining which method should be employed for exactly which problem to get the most realistic result. Therefore, we study the transition from stochastic to deterministic behavior in a widely studied system, namely the signal transduction via calcium, especially calcium oscillations. We observe that the transition occurs within a range of particle numbers, which roughly corresponds to the number of receptors and channels in the cell, and depends heavily on the attractive properties of the phase space of the respective systems dynamics. We conclude that the attractive properties of a system, expressed, e.g., by the divergence of the system, are a good measure for determining which simulation algorithm is appropriate in terms of speed and realism
Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures
The Kondo model predicts that both the valence at low temperatures and its
temperature dependence scale with the characteristic energy T_K of the Kondo
interaction. Here, we study the evolution of the 4f occupancy with temperature
in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In
agreement with simple theoretical models, we observe a scaling between the
valence at low temperature and T_K obtained from thermodynamic measurements. In
contrast, the temperature scale T_v at which the valence increases with
temperature is almost the same in all investigated materials while the Kondo
temperatures differ by almost four orders of magnitude. This observation is in
remarkable contradiction to both naive expectation and precise theoretical
predictions of the Kondo model, asking for further theoretical work in order to
explain our findings. Our data exclude the presence of a quantum critical
valence transition in YbRh2Si2
Anomalies, Hawking Radiations and Regularity in Rotating Black Holes
This is an extended version of our previous letter hep-th/0602146. In this
paper we consider rotating black holes and show that the flux of Hawking
radiation can be determined by anomaly cancellation conditions and regularity
requirement at the horizon. By using a dimensional reduction technique, each
partial wave of quantum fields in a d=4 rotating black hole background can be
interpreted as a (1+1)-dimensional charged field with a charge proportional to
the azimuthal angular momentum m. From this and the analysis gr-qc/0502074,
hep-th/0602146 on Hawking radiation from charged black holes, we show that the
total flux of Hawking radiation from rotating black holes can be universally
determined in terms of the values of anomalies at the horizon by demanding
gauge invariance and general coordinate covariance at the quantum level. We
also clarify our choice of boundary conditions and show that our results are
consistent with the effective action approach where regularity at the future
horizon and vanishing of ingoing modes at r=\infty are imposed (i.e. Unruh
vacuum).Comment: 21 pages, minor corrections, added an appendix to summarize our
notations for the Kaluza-Klein reductio
High-energy magnetic excitations in overdoped LaSrCuO studied by neutron and resonant inelastic X-ray scattering
We have performed neutron inelastic scattering and resonant inelastic X-ray
scattering (RIXS) at the Cu- edge to study high-energy magnetic
excitations at energy transfers of more than 100 meV for overdoped
LaSrCuO with ( K) and
(non-superconducting) using identical single crystal samples for the two
techniques. From constant-energy slices of neutron scattering cross-sections,
we have identified magnetic excitations up to ~250 meV for . Although
the width in the momentum direction is large, the peak positions along the (pi,
pi) direction agree with the dispersion relation of the spin-wave in the
non-doped LaCuO (LCO), which is consistent with the previous RIXS
results of cuprate superconductors. Using RIXS at the Cu- edge, we have
measured the dispersion relations of the so-called paramagnon mode along both
(pi, pi) and (pi, 0) directions. Although in both directions the neutron and
RIXS data connect with each other and the paramagnon along (pi, 0) agrees well
with the LCO spin-wave dispersion, the paramagnon in the (pi, pi) direction
probed by RIXS appears to be less dispersive and the excitation energy is lower
than the spin-wave of LCO near (pi/2, pi/2). Thus, our results indicate
consistency between neutron inelastic scattering and RIXS, and elucidate the
entire magnetic excitation in the (pi, pi) direction by the complementary use
of two probes. The polarization dependence of the RIXS profiles indicates that
appreciable charge excitations exist in the same energy range of magnetic
excitations, reflecting the itinerant character of the overdoped sample. A
possible anisotropy in the charge excitation intensity might explain the
apparent differences in the paramagnon dispersion in the (pi, pi) direction as
detected by the X-ray scattering.Comment: 7 pages, 7 figure
- …