2,021 research outputs found
A comparative study of the electrical characteristics of metal-semiconductor-metal (MSM) photodiodes based on gan grown on silicon.
High quality Gan films are usually produced at high growth temperatures (> 1OOO°C) with the use of substrates such as sapphire (Ah03) or silicon carbide (SiC).Therefore, for a low production cost purpose, there has been a growing interest in producing lower growth temperatures Gan films as well as Gan based devices with low cost substrates such as silicon
The Structure, Kinematics and Physical Properties of the Molecular Gas in the Starburst Nucleus of NGC 253
We present 5.2" x 2.6" resolution interferometry of CO J=1-0 emission from
the starburst galaxy NGC 253. The high spatial resolution of these new data, in
combination with recent high resolution maps of 13CO, HCN and near-infrared
emission, allow us for the first time to link unambiguously the gas properties
in the central starburst of NGC 253 with its bar dynamics. We confirm that the
star formation results from bar-driven gas flows as seen in "twin peaks"
galaxies. Two distinct kinematic features are evident from the CO map and
position-velocity diagram: a group of clouds rotating as a solid body about the
kinematic center of the galaxy, and a more extended gas component associated
with the near-infrared bar. We model the line intensities of CO, HCN and 13CO
to infer the physical conditions of the gas in the nucleus of NGC 253. The
results indicate increased volume densities around the radio nucleus in a
twin-peaks morphology. Compared with the CO kinematics, the gas densities
appear highest near the radius of a likely inner Linblad resonance, and
slightly lead the bar minor axis. This result is similar to observations of the
face-on, twin-peaks galaxy NGC 6951, and is consistent with models of starburst
generation due to gas inflow along a bar.Comment: To appear in the ApJ, 28 pages, 12 figure file
The Role of the Gut Microbiota in the Effects of Early-Life Stress and Dietary Fatty Acids on Later-Life Central and Metabolic Outcomes in Mice
Early-life stress (ELS) leads to increased vulnerability for mental and metabolic disorders. We have previously shown that a low dietary ω-6/ω-3 polyunsaturated fatty acid (PUFA) ratio protects against ELS-induced cognitive impairments. Due to the importance of the gut microbiota as a determinant of long-term health, we here study the impact of ELS and dietary PUFAs on the gut microbiota and how this relates to the previously described cognitive, metabolic, and fatty acid profiles. Male mice were exposed to ELS via the limited bedding and nesting paradigm (postnatal day (P)2 to P9 and to an early diet (P2 to P42) with an either high (15) or low (1) ω-6 linoleic acid to ω-3 alpha-linolenic acid ratio. 16S rRNA was sequenced and analyzed from fecal samples at P21, P42, and P180. Age impacted α- and β-diversity. ELS and diet together predicted variance in microbiota composition and affected the relative abundance of bacterial groups at several taxonomic levels in the short and long term. For example, age increased the abundance of the phyla Bacteroidetes, while it decreased Actinobacteria and Verrucomicrobia; ELS reduced the genera RC9 gut group and Rikenella, and the low ω-6/ω-3 diet reduced the abundance of the Firmicutes Erysipelotrichia. At P42, species abundance correlated with body fat mass and circulating leptin (e.g., Bacteroidetes and Proteobacteria taxa) and fatty acid profiles (e.g., Firmicutes taxa). This study gives novel insights into the impact of age, ELS, and dietary PUFAs on microbiota composition, providing potential targets for noninvasive (nutritional) modulation of ELS-induced deficits. IMPORTANCE Early-life stress (ELS) leads to increased vulnerability to develop mental and metabolic disorders; however, the biological mechanisms leading to such programming are not fully clear. Increased attention has been given to the importance of the gut microbiota as a determinant of long-term health and as a potential target for noninvasive nutritional strategies to protect against the negative impact of ELS. Here, we give novel insights into the complex interaction between ELS, early dietary ω-3 availability, and the gut microbiota across ages and provide new potential targets for (nutritional) modulation of the long-term effects of the early-life environment via the microbiota
Modulation of the Hypothalamic Nutrient Sensing Pathways by Sex and Early-Life Stress
There are sex differences in metabolic disease risk, and early-life stress (ES) increases the risk to develop such diseases, potentially in a sex-specific manner. It remains to be understood, however, how sex and ES affect such metabolic vulnerability. The hypothalamus regulates food intake and energy expenditure by sensing the organism’s energy state via metabolic hormones (leptin, insulin, ghrelin) and nutrients (glucose, fatty acids). Here, we investigated if and how sex and ES alter hypothalamic nutrient sensing short and long-term. ES was induced in mice by limiting the bedding and nesting material from postnatal day (P)2-P9, and the expression of genes critical for hypothalamic nutrient sensing were studied in male and female offspring, both at P9 and in adulthood (P180). At P9, we observed a sex difference in both Ppargc1a and Lepr expression, while the latter was also increased in ES-exposed animals relative to controls. In adulthood, we found sex differences in Acacb, Agrp, and Npy expression, whereas ES did not affect the expression of genes involved in hypothalamic nutrient sensing. Thus, we observe a pervasive sex difference in nutrient sensing pathways and a targeted modulation of this pathway by ES early in life. Future research is needed to address if the modulation of these pathways by sex and ES is involved in the differential vulnerability to metabolic diseases
Demonstration of microwave single-shot quantum key distribution
Security of modern classical data encryption often relies on computationally
hard problems, which can be trivialized with the advent of quantum computers. A
potential remedy for this is quantum communication which takes advantage of the
laws of quantum physics to provide secure exchange of information. Here,
quantum key distribution (QKD) represents a powerful tool, allowing for
unconditionally secure quantum communication between remote parties. At the
same time, microwave quantum communication is set to play an important role in
future quantum networks because of its natural frequency compatibility with
superconducting quantum processors and modern near-distance communication
standards. To this end, we present an experimental realization of a
continuous-variable QKD protocol based on propagating displaced squeezed
microwave states. We use superconducting parametric devices for generation and
single-shot quadrature detection of these states. We demonstrate unconditional
security in our experimental microwave QKD setting. We show that security
performance can be improved by adding finite trusted noise to the preparation
side. Our results indicate feasibility of secure microwave quantum
communication with the currently available technology in both open-air (up to
80 m) and cryogenic (over 1000 m) conditions.Comment: 9 pages, 3 figures, 1 supplementary information fil
A multi-wavelength investigation of the radio-loud supernova PTF11qcj and its circumstellar environment
We present the discovery, classification, and extensive panchromatic (from
radio to X-ray) follow-up observations of PTF11qcj, a supernova discovered by
the Palomar Transient Factory. PTF11qcj is located at a distance of dL ~ 124
Mpc. Our observations with the Karl G. Jansky Very Large Array show that this
event is radio-loud: PTF11qcj reached a radio peak luminosity comparable to
that of the famous gamma-ray-burst-associated supernova 1998bw (L_{5GHz} ~
10^{29} erg/s/Hz). PTF11qcj is also detected in X-rays with the Chandra
observatory, and in the infrared band with Spitzer. Our multi-wavelength
analysis probes the supernova interaction with circumstellar material. The
radio observations suggest a progenitor mass-loss rate of ~10^{-4} Msun/yr x
(v_w/1000 km/s), and a velocity of ~(0.3-0.5)c for the fastest moving ejecta
(at ~10d after explosion). However, these estimates are derived assuming the
simplest model of supernova ejecta interacting with a smooth circumstellar
material characterized by radial power-law density profile, and do not account
for possible inhomogeneities in the medium and asphericity of the explosion.
The radio light curve shows deviations from such a simple model, as well as a
re-brightening at late times. The X-ray flux from PTF11qcj is compatible with
the high-frequency extrapolation of the radio synchrotron emission (within the
large uncertainties). An IR light echo from pre-existing dust is in agreement
with our infrared data. Our analysis of pre-explosion data from the Palomar
Transient Factory suggests that a precursor eruption of absolute magnitude M_r
~ -13 mag may have occurred ~ 2.5 yr prior to the supernova explosion. Based on
our panchromatic follow-up campaign, we conclude that PTF11qcj fits the
expectations from the explosion of a Wolf-Rayet star. Precursor eruptions may
be a feature characterizing the final pre-explosion evolution of such stars.Comment: 43 pages, 15 figures; this version matches the one published in ApJ
(includes minor changes that address the Referee's comments.
Constraints on Planetary Companions in the Magnification A=256 Microlensing Event: OGLE-2003-BLG-423
We develop a new method of modeling microlensing events based on a Monte
Carlo simulation that incorporates both a Galactic model and the constraints
imposed by the observed characteristics of the event. The method provides an
unbiased way to analyze the event especially when parameters are poorly
constrained by the observed lightcurve. We apply this method to search for
planetary companions of the lens in OGLE-2003-BLG-423, whose maximum
magnification A_max=256+-43 (or A_max=400+-115 from the lightcurve data alone)
is the highest among single-lens events ever recorded. The method permits us,
for the first time, to place constraints directly in the
planet-mass/projected-physical-separation plane rather than in the
mass-ratio/Einstein-radius plane as was done previously. For example,
Jupiter-mass companions of main-sequence stars at 2.5 AU are excluded with 80%
efficiency.Comment: 10 pages, 7 figures, accepted for publication in The Astrophysical
Journa
- …