467 research outputs found
Integration of DSM and SPH to Model Tailings Dam Failure Run-Out Slurry Routing Across 3D Real Terrain
This is the final version of the article. Available from MDPI via the DOI in this record.Tailings dam failure accidents occur frequently, causing substantial damage and loss of human and animal life. The prediction of run-out tailings slurry routing following dam failures is of great significance for disaster prevention and mitigation. Using satellite remote sensing digital surface model (DSM) data, tailings pond parameters and the advanced meshless smoothed particle hydrodynamics (SPH) method, a 3D real-scale numerical modelling method was adopted to study the run-out tailings slurry routing across real downstream terrains that have and have not been affected by dam failures. Three case studies, including a physical modelling experiment, the 2015 Brazil Fundão tailings dam failure accident and an operating high-risk tailings pond in China, were carried out. The physical modelling experiment and the known consequences were successfully modeled and validated using the SPH method. This and the other experiments showed that the run-out tailings slurry would be tremendously destructive in the early stages of dam failure, and emergency response time would be extremely short if the dam collapses at its full designed capacity. The results could provide evidence for disaster prevention and mitigation engineering, emergency management plan optimization, and the development of more responsible site plans and sustainable site designs. However, improvements such as rheological model selection, terrain data quality, computing efficiency and land surface roughness need to be made for future studies. SPH numerical modelling is a powerful and advanced technique that is recommended for hazard assessment and the sustainable design of tailings dam facilities globally.This research was funded by the National Natural Science Foundation of China (grant number 51774045), National Key R&D Program of China (grant number 2017YFC0804600), China Scholarship Council (grant number 201706460051) and Natural Science Foundation project of Chongqing Science and Technology Commission (grant number cstc2016jcyjA0319 and cstc2018jcyjAX0231)
Repetitive Segmental Structure of the Transducin β Subunit: Homology with the CDC4 Gene and Identification of Related mRNAs
Retinal transducin, a guanine nucleotide regulatory protein (referred to as a G protein) that activates a cGMP phosphodiesterase in photoreceptor cells, is comprised of three subunits. We have identified and analyzed cDNA clones of the bovine transducin β subunit that may be highly conserved or identical to that in other G proteins. From the cDNA nucleotide sequence of the entire coding region, the primary structure of a 340-amino acid protein was deduced. The encoded β subunit has a Mr of 37,375 and is comprised of repetitive homologous segments arranged in tandem. Furthermore, significant homology in primary structure and segmental sequence exists between the β subunit and the yeast CDC4 gene product. The Mr 37,375 β subunit polypeptide is encoded by a 2.9-kilobase (kb) mRNA. However, there exists in retina other β-related mRNAs that are divergent from the 2.9-kb mRNA on the basis of oligonucleotide and primer-extended probe hybridizations. All mammalian tissues and clonal cell lines that have been examined contain at least two β-related mRNAs, usually 1.8 and 2.9 kb in length. These results suggest that the mRNAs are the processed products of a small number of closely related genes or of a single highly complex β gene
Disorder-enhanced phase coherence in trapped bosons on optical lattices
The consequences of disorder on interacting bosons trapped in optical
lattices are investigated by quantum Monte Carlo simulations. At small to
moderate strengths of potential disorder a unique effect is observed: if there
is a Mott plateau at the center of the trap in the clean limit, phase coherence
{\it increases} as a result of disorder. The localization effects due to
correlation and disorder compete against each other, resulting in a partial
delocalization of the particles in the Mott region, which in turn leads to
increased phase coherence. In the absence of a Mott plateau, this effect is
absent. A detailed analysis of the uniform system without a trap shows that the
disordered states participate in a Bose glass phase.Comment: 4 pages, 4 figure
The Atmospheric Effects of Stratospheric Aircraft: a First Program Report
Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models
Stratospheric aircraft exhaust plume and wake chemistry studies
This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3
Order via Nonlinearity in Randomly Confined Bose Gases
A Hartree-Fock mean-field theory of a weakly interacting Bose-gas in a
quenched white noise disorder potential is presented. A direct continuous
transition from the normal gas to a localized Bose-glass phase is found which
has localized short-lived excitations with a gapless density of states and
vanishing superfluid density. The critical temperature of this transition is as
for an ideal gas undergoing Bose-Einstein condensation. Increasing the
particle-number density a first-order transition from the localized state to a
superfluid phase perturbed by disorder is found. At intermediate number
densities both phases can coexist.Comment: Author Information under
http://www.theo-phys.uni-essen.de/tp/ags/pelster_dir/. International Journal
of Bifurcation and Chaos (in press
Analysis of Localization Phenomena in Weakly Interacting Disordered Lattice Gases
Disorder plays a crucial role in many systems particularly in solid state
physics. However, the disorder in a particular system can usually not be chosen
or controlled. We show that the unique control available for ultracold atomic
gases may be used for the production and observation of disordered quantum
degenerate gases. A detailed analysis of localization effects for two possible
realizations of a disordered potential is presented. In a theoretical analysis
clear localization effects are observed when a superlattice is used to provide
a quasiperiodic disorder. The effects of localization are analyzed by
investigating the superfluid fraction and the localization length within the
system. The theoretical analysis in this paper paves a clear path for the
future observation of Anderson-like localization in disordered quantum gases.Comment: 9 pages, 13 figure
Making Friends in the Rainforest: Negrito Adaptation to Risk and Uncertainty
The so-called negritos adapt not just to a tropical forest environment but also to an environment characterized by perturbations and fluctuations. As with other hunter-gatherers in the region and, indeed, throughout the world, they use both social and ecological methods to enhance their chances of survival in this changing environment: socially, they have developed networks of trading and marriage partners; ecologically, they maintain patches of key resources that are available for future harvesting. As evidenced in the case of the Batek (Orang Asli), patterns of forest structure and composition are sometimes direct outcomes of intentional resource concentration and enrichment strategies.
While little of the above is controversial anthropologically, what has drawn some debate is the nature of the relationship with partner societies. Conventional wisdom posits relations of inequality between foragers and others : foragers and farmers are often construed as hierarchical dyads where foragers supply products or labor to farmers in exchange for agricultural harvests and other trade goods. This kind of adaptation appears to be one of divergent specialization. However, there are cases, such as in the relationship between Batek and Semaq Beri, where both societies follow a roughly similar mode of adaptation, and specialization has not materialized. In sum, while not denying that hierarchy and inequality exist, I suggest that they have to be contextualized within a larger strand of relationships that includes both hierarchy and egality. Further, such relationships are part of the general portfolio of risk reduction strategies, following which access to widely scattered environmental resources, and passage from one location to another, is enhanced not by competing with and displacing neighbors but by maintaining a flexible regime of friendly exchange partners
Mean-field phase diagram of disordered bosons in a lattice at non-zero temperature
Bosons in a periodic lattice with on-site disorder at low but non-zero
temperature are considered within a mean-field theory. The criteria used for
the definition of the superfluid, Mott insulator and Bose glass are analysed.
Since the compressibility does never vanish at non-zero temperature, it can not
be used as a general criterium. We show that the phases are unambiguously
distinguished by the superfluid density and the density of states of the
low-energy exitations. The phase diagram of the system is calculated. It is
shown that even a tiny temperature leads to a significant shift of the boundary
between the Bose glass and superfluid
Performance analysis of two bridged CSMA/CD networks
Computer Communications168501-510COCO
- …