3,415 research outputs found
Exploring small energy scales with x-ray absorption and dichroism
Soft x-ray linear and circular dichroism (XLD, XMCD) experiments at the Ce
M edges are being used to determine the energy scales characterizing
the Ce degrees of freedom in the ultrathin ordered surface intermetallic
CeAg/Ag(111). We find that all relevant interactions, i. e. Kondo
scattering, crystal field splitting and magnetic exchange coupling occur on
small scales. Our study demonstrates the usefulness of combining x-ray
absorption experiments probing linear and circular dichroism owing to their
strong sensitivity for anisotropies in both charge distribution and
paramagnetic response, respectively.Comment: 5 pages, 4 figure
Atomic and itinerant effects at the transition metal x-ray absorption K-pre-edge exemplified in the case of VO
X-ray absorption spectroscopy is a well established tool for obtaining
information about orbital and spin degrees of freedom in transition metal- and
rare earth-compounds. For this purpose usually the dipole transitions of the L-
(2p to 3d) and M- (3d to 4f) edges are employed, whereas higher order
transitions such as quadrupolar 1s to 3d in the K-edge are rarely studied in
that respect. This is due to the fact that usually such quadrupolar transitions
are overshadowed by dipole allowed 1s to 4p transitions and, hence, are visible
only as minor features in the pre-edge region. Nonetheless, these features
carry a lot of valuable information, similar to the dipole L-edge transition,
which is not accessible in experiments under pressure due to the absorption of
the diamond anvil pressurecell. We recently performed a theoretical and
experimental analysis of such a situation for the metal insulator transition of
(V(1-x)Crx)2O3. Since the importance of the orbital degrees of freedom in this
transition is widely accepted, a thorough understanding of quadrupole
transitions of the vanadium K-pre-edge provides crucial information about the
underlying physics. Moreover, the lack of inversion symetry at the vanadium
site leads to onsite mixing of vanadium 3d- and 4p- states and related quantum
mechanical interferences between dipole and quadrupole transitions. Here we
present a theoretical analysis of experimental high resolution x-ray absorption
spectroscopy at the V pre-K edge measured in partial fluorescence yield mode
for single crystals. We carried out density functional as well as configuration
interaction calculations in order to capture effects coming from both,
itinerant and atomic limits
Inequivalent routes across the Mott transition in V2O3 explored by X-ray absorption
The changes in the electronic structure of V2O3 across the metal-insulator
transition induced by temperature, doping and pressure are identified using
high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to
what has been taken for granted so far, the metallic phase reached under
pressure is shown to differ from the one obtained by changing doping or
temperature. Using a novel computational scheme, we relate this effect to the
role and occupancy of the a1g orbitals. This finding unveils the inequivalence
of different routes across the Mott transition in V2O
Monte Carlo Methods for Rough Free Energy Landscapes: Population Annealing and Parallel Tempering
Parallel tempering and population annealing are both effective methods for
simulating equilibrium systems with rough free energy landscapes. Parallel
tempering, also known as replica exchange Monte Carlo, is a Markov chain Monte
Carlo method while population annealing is a sequential Monte Carlo method.
Both methods overcome the exponential slowing associated with high free energy
barriers. The convergence properties and efficiency of the two methods are
compared. For large systems, population annealing initially converges to
equilibrium more rapidly than parallel tempering for the same amount of
computational work. However, parallel tempering converges exponentially and
population annealing inversely in the computational work so that ultimately
parallel tempering approaches equilibrium more rapidly than population
annealing.Comment: 10 pages, 3 figure
Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram
We describe an efficient Monte Carlo algorithm using a random walk in energy
space to obtain a very accurate estimate of the density of states for classical
statistical models. The density of states is modified at each step when the
energy level is visited to produce a flat histogram. By carefully controlling
the modification factor, we allow the density of states to converge to the true
value very quickly, even for large systems. This algorithm is especially useful
for complex systems with a rough landscape since all possible energy levels are
visited with the same probability. In this paper, we apply our algorithm to
both 1st and 2nd order phase transitions to demonstrate its efficiency and
accuracy. We obtained direct simulational estimates for the density of states
for two-dimensional ten-state Potts models on lattices up to
and Ising models on lattices up to . Applying this approach to
a 3D spin glass model we estimate the internal energy and entropy at
zero temperature; and, using a two-dimensional random walk in energy and
order-parameter space, we obtain the (rough) canonical distribution and energy
landscape in order-parameter space. Preliminary data suggest that the glass
transition temperature is about 1.2 and that better estimates can be obtained
with more extensive application of the method.Comment: 22 pages (figures included
Multicanonical Recursions
The problem of calculating multicanonical parameters recursively is
discussed. I describe in detail a computational implementation which has worked
reasonably well in practice.Comment: 23 pages, latex, 4 postscript figures included (uuencoded
Z-compressed .tar file created by uufiles), figure file corrected
Partnership, ownership and control: the impact of corporate governance on employment relations
Prevailing patterns of dispersed share ownership and rules of corporate governance for UK listed companies appear to constrain the ability of managers to make credible, long-term commitments to employees of the kind needed to foster effective labour-management partnerships. We present case study evidence which suggests that such partnerships can nevertheless emerge where product market conditions and the regulatory environment favour a stakeholder orientation. Proactive and mature partnerships may also be sustained where the board takes a strategic approach to mediating between the claims of different stakeholder groups, institutional investors are prepared to take a long-term view of their holdings, and strong and independent trade unions are in a position to facilitate organisational change
A family case of fertile human 45,X,psu dic(15;Y) males
We report on a familial case including four male probands from three generations with a 45,X,psu dic(15;Y)(p11.2;q12) karyotype. 45,X is usually associated with a female phenotype and only rarely with maleness, due to translocation of small Y chromosomal fragments to autosomes. These male patients are commonly infertile because of missing azoospermia factor regions from the Y long arm. In our familial case we found a pseudodicentric translocation chromosome, that contains almost the entire chromosomes 15 and Y. The translocation took place in an unknown male ancestor of our probands and has no apparent effect on fertility and phenotype of the carrier. FISH analysis demonstrated the deletion of the pseudoautosomal region 2 (PAR2) from the Y chromosome and the loss of the nucleolus organizing region (NOR) from chromosome 15. The formation of the psu dic(15;Y) chromosome is a reciprocal event to the formation of the satellited Y chromosome (Yqs). Statistically, the formation of 45,X,psu dic(15;Y) (p11.2;q12) is as likely as the formation of Yqs. Nevertheless, it has not been described yet. This can be explained by the dicentricity of this translocation chromosome that usually leads to mitotic instability and meiotic imbalances. A second event, a stable inactivation of one of the two centromeres is obligatory to enable the transmission of the translocation chromosome and thus a stably reduced chromosome number from father to every son in this family
Weak and strong electronic correlations in Fe superconductors
In this chapter the strength of electronic correlations in the normal phase
of Fe-superconductors is discussed. It will be shown that the agreement between
a wealth of experiments and DFT+DMFT or similar approaches supports a scenario
in which strongly-correlated and weakly-correlated electrons coexist in the
conduction bands of these materials. I will then reverse-engineer the realistic
calculations and justify this scenario in terms of simpler behaviors easily
interpreted through model results. All pieces come together to show that Hund's
coupling, besides being responsible for the electronic correlations even in
absence of a strong Coulomb repulsion is also the origin of a subtle emergent
behavior: orbital decoupling. Indeed Hund's exchange decouples the charge
excitations in the different Iron orbitals involved in the conduction bands
thus causing an independent tuning of the degree of electronic correlation in
each one of them. The latter becomes sensitive almost only to the offset of the
orbital population from half-filling, where a Mott insulating state is
invariably realized at these interaction strengths. Depending on the difference
in orbital population a different 'Mottness' affects each orbital, and thus
reflects in the conduction bands and in the Fermi surfaces depending on the
orbital content.Comment: Book Chapte
- âŠ