2,292 research outputs found

    Hot Atom Chemistry and Recoil Implantation Induced Reaction in Geometrical Isomers of Tris-(benzoylacetonato)Cr(III)

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Charge-Density-Wave Ordering in the Metal-Insulator Transition Compound PrRu4P12

    Get PDF
    X-ray and electron diffraction measurements on the metal-insulator (M-I) transition compound PrRu4_4P12_{12} have revealed the emergence of a periodic ordering of charge density around the Pr atoms. It is found that the ordering is associated with the onset of a low temperature insulator phase. These conclusions are supported by the facts that the space group of the crystal structure transforms from Im3ˉ\bar{3} to Pm3ˉ\bar{3} below the M-I transition temperature and also that the temperature dependence of the superlattice peaks in the insulator phase follows the squared BCS function. The M-I transition could be originated from the perfect nesting of the Fermi surface and/or the instability of the ff electrons.Comment: 4 pages, 5 figures, Phys. Rev. B (2004) (in press

    Metal-insulator transition in PrRu4_4P12_{12} and SmRu4_4P12_{12} investigated by optical spectroscopy

    Get PDF
    Electronic structures of the filled-skutterudite compounds PrRu4_4P12_{12} and SmRu4_4P12_{12}, which undergo a metal-insulator transition (MIT) at TMIT_{\rm MI} = 60 K and 16 K, respectively, have been studied by means of optical spectroscopy. Their optical conductivity spectra develop an energy gap of \sim 10 meV below TMIT_{\rm MI}. The observed characteristics of the energy gap are qualitatively different from those of the Kondo semiconductors. In addition, optical phonon peaks in the spectra show anomalies upon the MIT, including broadening and shifts at TMIT_{\rm MI} and an appearance of new peaks below TMIT_{\rm MI}. These results are discussed in terms of density waves or orbital ordering previously predicted for these compounds.Comment: 4pages, 4figures, submitted to Physical Review

    Theory of Metal-Insulator Transition in PrRu4P12 and PrFe4P12

    Full text link
    All symmetry allowed couplings between the 4f^2-electron ground state doublet of trivalent praseodymium in PrRu4P12 and PrFe4P12 and displacements of the phosphorus, iron or ruthenium ions are considered. Two types of displacements can change the crystal lattice from body-centred cubic to simple orthorhombic or to simple cubic. The first type lowers the point group symmetry from tetrahedral to orthorhombic, while the second type leaves it unchanged, with corresponding space group reductions Im3 --> Pmmm and Im3 --> Pm3 respectively. In former case, the lower point-group symmetry splits the degeneracy of the 4f^2 doublet into states with opposite quadrupole moment, which then leads to anti-quadrupolar ordering, as in PrFe4P12. Either kind of displacement may conspire with nesting of the Fermi surface to cause the metal-insulator or partial metal-insulator transition observed in PrFe4P12 and PrRu4P12. We investigate this scenario using band-structure calculations, and it is found that displacements of the phosphorus ions in PrRu4P12 (with space group reduction Im3 --> Pm3) open a gap everywhere on the Fermi surface.Comment: 6 page

    31P-NMR and muSR Studies of Filled Skutterudite Compound SmFe4P12: Evidence for Heavy Fermion Behavior with Ferromagnetic Ground State

    Full text link
    The 31P-NMR (nuclear magnetic resonance) and muSR (muon spin relaxation) measurements on the filled skutterudite system SmFe4P12 have been carried out. The temperature T dependence of the 31P-NMR spectra indicates the existence of the crystalline electric field effect splitting of the Sm3+$ (J = 5/2) multiplet into a ground state and an excited state of about 70 K. The spin-lattice relaxation rate 1/T1 shows the typical behavior of the Kondo system, i.e., 1/T1 is nearly T independent above 30 K, and varies in proportion to T (the Korringa behavior, 1/T1 \propto T) between 7.5 K and 30 K. The T dependence deviated from the Korringa behavior below 7 K, which is independent of T in the applied magnetic field of 1 kOe, and suppressed strongly in higher fields. The behavior is explained as 1/T1is determined by ferromagnetic fluctuations of the uncovered Sm3+ magnetic moments by conduction electrons. The muSR measurements in zero field show the appearance of a static internal field associated with the ferromagnetic order below 1.6 K.Comment: 6 pages, 9 figures, to be published in J. Phys. Soc. Jpn. 75 (2006
    corecore