

Transfer Factors of Technetium-99 for Various Plants in Forests

著者	Tagami K., Uchida S., Sekine T.
journal or	CYRIC annual report
publication title	
volume	2005
page range	93-97
year	2005
URL	http://hdl.handle.net/10097/50324

V. 6. Transfer Factors of Technetium-99 for Various Plants in Forests

Tagami K.¹, Uchida S.¹, and Sekine T^2 .

¹Environmental and Toxicological Sciences Research Group, National Institute of Radiological Sciences ²Center for the Advancement of High Education, Tohoku University

Introduction

Technetium belongs to the Mn group and it has no stable isotopes. Among its radioactive isotopes, ⁹⁹Tc is of potential long-term importance in the environment, because ⁹⁹Tc is a pure beta emitter (E_{max} =0.29 keV) and its half-life is 2.11 x 10⁵ v. It is produced in the fissions of ²³⁵U and ²³⁹Pu at relatively high ratios of ca. 6%, which is similar to the values for ¹³⁷Cs and ⁹⁰Sr. Technetium-99 is widely distributed in the environment as a result of fallout from nuclear weapons testing and discharges from nuclear facilities. The quantity of ⁹⁹Tc produced by atmospheric nuclear weapon explosions was estimated to be 140 TBg using an equal fission yield to that of ¹³⁷Cs and actual ¹³⁷Cs deposition data¹). The release of 99 Tc by nuclear industries through 1986, as estimated by Luykx²⁾, was of the order of 1000 TBq. This was mainly from nuclear fuel reprocessing and most of the ⁹⁹Tc was discharged into the sea and ⁹⁹Tc concentration in the terrestrial environment is very low³⁾. The amount introduced via nuclear medical use of ^{99m}Tc (half-life: 6.01 h) is negligible. For example, the amounts from ⁹⁹Mo-^{99m}Tc generators and ^{99m}Tc used during 2004 in Japan were 173 TBq and 325 TBq, respectively⁴), which corresponds to ca. 1.6 MBq of ⁹⁹Tc generation in total.

Due to very low concentration and analytical difficulties for determination of 99 Tc in environmental samples, there is a general lack of data on the levels in the literature. Therefore, the behavior of 99 Tc in the terrestrial environment is not well understood. However, it is necessary to obtain transfer parameters under natural conditions for a realistic long-term radiological assessment such as soil-to-plant transfer factors (TFs, concentration in plant/concentration in soil). Thus, we focused on the Chernobyl site where 99 Tc concentration levels have already been shown to be higher than those from global fallout Tc⁵⁾. The concentrations of 99 Tc in plant leaves collected in three forests

near the Chernobyl site were determined. The samples were leaves of raspberry, strawberry and pink plants, black alder, birch, cowberry and oak trees, and ferns. Since TFs are usually high in leafy vegetables and grass as reported in Reference 6, leaves of raspberry, strawberry and pink plants are of the most interest in this study for comparison purposes.

Experimental

A Tc-selective chromatographic resin (Eichrom Industries Inc., TEVA resin) was used for Tc purification. Deionized water (>17.6 M Ω) was used throughout the work. Technetium-95m, which was obtained from an Nb foil using the reaction ⁹³Nb (a, 2n) ^{95m}Tc, was applied to determine the recovery of ⁹⁹Tc in the samples during the chemical separation procedure. The ^{95m}Tc was made at Cycrotron and Radioisotope Center, Tohoku University⁶). A standard ⁹⁹Tc solution available from Amersham (Solution TCZ.44) was used for calibrating the ICP-MS.

Leaves of 27 plant samples were collected at the Chernobyl site in 1994 and 1995 by the Federal Office for Radiation Protection, Germany, assisted by Moscow State University, Russia, and the Research and Industrial Association 'Pripyat', Ukraine. The sampling was carried out in three forests, D1, D3 and K2, around the Chernobyl Nuclear Power Plant. Forests D1 and D3 were 28.5 km and 26 km to the south of the reactor, respectively, while forest K2 was 6 km to the southeast. Soil samples were also collected at the same sampling sites and the details were reported previously⁵⁾.

A simple wet digestion method in combination with an TEVA resin separation method was applied for ⁹⁹Tc. After incineration of the soil samples at 450°C, a certain amount of ^{95m}Tc was added and they were mixed uniformly. Then, Tc was extracted with 4M HNO₃ while heating the samples at 100°C in a glass beaker covered with a watch glass. The residue was removed by filtration and the solution was diluted to obtain the acidity of ca. 0.1M HNO₃ and passed through a TEVA resin column to purify and concentrate Tc isotopes. Technetium adsorbed on the resin was eluted with 5 mL of 8 M HNO₃ solution. The volume of the ⁹⁹Tc fraction from the TEVA column solution was reduced to near dryness (<70°C) and then dissolved in 5mL of 2% HNO₃ solution. Radiochemical recoveries of Tc plant samples were monitored with ^{95m}Tc activities. Then the solution was introduced into an ICP-MS (Yokogawa, PMS-2000).

Results and Discussion

Total chemical recoveries throughout the method with ^{95m}Tc ranged from 0.48 to 0.92 with an average of 0.76. No relation was found between sample amount and recovery. Three replicates of samples K2-94F-1 and D3-94G-1 were used in amounts of 1 - 2.6 g and 1.8 - 10.2 g, respectively, and there were no differences between their recoveries. However, the recoveries of two sub-samples of K2-94G-2 and D1-94G-1 differed by about 0.1 and 0.2, respectively; when sample amounts increased, the recoveries decreased. Possibly, plant matrices, such as K, Ca and Cl, would affect the ⁹⁹Tc recovery, especially at the TEVA resin separation steps.

Technetium-99 concentrations in all samples are listed in Table 1 and they ranged from <0.006 to 6.0 mBq g⁻¹. For 11 samples, especially in the tree group, it was hard to determine ⁹⁹Tc, because of its low concentration.

TF is defined as the ratio of activity concentration in plant (in Bq g⁻¹ dry weight (DW)) to activity concentration in soil (in Bq g⁻¹ DW). It has been noted that forest under story plants are expected to take up radionuclides mainly from organic layers and therefore, concentration of ⁹⁹Tc in organic soil would be important for estimation of its uptake. Thus, TFs were calculated in terms of activity concentration in a plant relative to activity concentration in organic soil. Table 1 also shows the TFs of Tc for all the samples. They ranged from <0.016 to 0.28 for Fern, 0.009 to 0.47 for Herb and <0.006 to 0.05 for Tree groups based on the ⁹⁹Tc contents of the organic layers. The highest TF was found in the leaves of raspberry. The observed-TFs were lower than the IAEA-compiled values of 8.1 - 2600 for leafy vegetables, fodder and grass⁷; other reported values are as listed in Table 2. Comparing the TF for Tc reported for various plants grown in soil, the present results were almost the same as the data observed in reclaimed land¹⁰, although the data from pot experiments¹¹ were much higher.

From these results, we concluded Tc bioavailability in the natural environment would be lower than the bioavailabilities obtained from laboratory studies that used TcO_4^- to obtain Tc TFs. It is known that the most plant-available form of Tc is TcO_4^- , and other forms have less availability to plants. Thus, TcO_4^- was not the only Tc chemical from in these forests. Possibly most Tc was in less soluble form, such as organically bound forms, sesquioxide bound and lower oxidation forms¹².

Concerning the Herb group, the TFs were 0.17-0.47 at K2, 0.20-0.32 at D1 and 0.009-0.086 at D3. The TFs for the samples collected at D3 were lower than those at D1 and K2. This might be due to the fact that D3 was a so-called wet forest and reducing

conditions might possibly exist. The bioavailable Tc was presumably influenced by the soil redox conditions: Tc would be transformed from to a lower oxidation and less available form under a relatively low redox condition. Due to the relatively low redox conditions of the D3 site, the TFs were lower than those in K2 and D1 sites.

Thus, the low TFs we observed in this study implied that 8-9 years after ⁹⁹Tc release from the Chernobyl Nuclear Power Plant, Tc should have been transformed to insoluble or less plant-available forms. Technetium would not be in readily available form to plants in the natural environment.

References

- 1) Aarkrog A., Dahlgaard H., Hallstadius L., Holm E., Mattson S., Rioseco J., Technetium in the Environment (Desmet G. and Myttenaere C. eds.), Elsevier Appl. Sci. Pub., London (1986) 69.
- 2) Luykx F., Technetium in the Environment (Desmet G. and Myttenaere C. eds.), Elsevier Appl. Sci. Pub., London (1986) 21.
- 3) Tagami K., Uchida S., J. Nucl. Radiochem. Sci. 3 (2002) 1.
- 4) Japan Isotope Association, Statistics on the Use of Radiation in Japan (2005) 38.
- 5) Uchida S., Tagami K., Wirth E., Rühm W., Chemosphere 39 (1999) 2757.
- 6) Sekine T., Konishi M., Kudo H., Tagami K., Uchida S., J. Radioanal. Nucl. Chem. 239 (1999) 483.
- 7) IAEA, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Temperate Environments, Technical Reports Series No. 364. IAEA, Vienna, (1994) 14.
- 8) Vandecasteele C.M., Dehut J.P., Van Laer S., Deprins D., Myttenaere C., Health Phys. 57 (1989) 247.
- 9) Hoffman F.O., Garten C.T., Jr., Lucas D.M., Huckabee J.W., Environ. Sci. Technol. 16 (1982) 214.
- 10) Green N., Wilkins B.T., Davidson M.F., Hammond D.J., J. Environ. Radioactiv. 27 (1995) 35.
- 11) Echevarria G., Morel J.L., Florentin L., Leclerc-Cessac, E. J. Environ. Radioact. 70 (2003) 85.
- 12) Tagami K., Uchida S., Toxicol. Environ. Chem. 56 (1996) 235.

Plant type Place		Tc-95m		Tc-99		Transfer factor
			Recovery	y mBq g ⁻¹ dry		Transfer factor
Fern	K2	94Fern-1a	0.847	2.42	± 0.18	
		94Fern-1b	0.895	2.37	± 0.29	
		94Fern-1c	0.884	2.31	± 0.26	0.276 ± 0.019
		95Fern-1	0.829	0.603	$\pm \ 0.045$	0.045 ± 0.003
		95Fern-2	0.749	3.79	± 0.35	0.283 ± 0.026
	D3	94Fern-1	0.661	< 0.040		< 0.016
		95Fern-2	0.483	< 0.031		< 0.018
		95Fern-3	0.844	< 0.069		< 0.040
Glass	K2	94Glass-1	0.599	4.04	± 0.42	0.470 ±0.051
		94Glass-2a	0.747	1.30	± 0.17	
		94Glass-2b	0.852	1.57	± 0.16	0.168 ± 0.015
		95Glass-1	0.739	6.02	± 0.52	0.450 ± 0.039
		95Glass-2	0.762	3.61	± 0.33	0.269 ± 0.025
	D1	94Glass-1a	0.596	0.254	± 0.022	
		94Glass-1b	0.824	0.451	$\pm \ 0.090$	0.318 ± 0.042
		94Glass-2	0.563	0.222	± 0.017	0.200 ± 0.015
		95Glass-1	0.901	0.257	± 0.021	0.231 ± 0.019
	D3	94Glass-1	0.868	0.215	± 0.016	0.092 ± 0.006
		94Glass-2	0.706	0.094	± 0.008	0.039 ± 0.003
		94Glass-3	0.553	0.128	± 0.011	0.053 ± 0.004
		95Glass-1	0.915	0.016	± 0.003	0.009 ± 0.002
Tree	D1	94Tree-1	0.898	< 0.006		< 0.006
		95Tree-1	0.883	0.013	± 0.001	0.012 ± 0.001
	D3	94Tree-1	0.878	< 0.035		< 0.014
		94Tree-2	0.652	< 0.040		< 0.016
		94Tree-3	0.850	< 0.056		< 0.023
		94Tree-4	0.633	< 0.028		< 0.011
		95Tree-1	0.685	< 0.028		< 0.016
		95Tree-2	0.543	< 0.023		< 0.013
		95Tree-3	0.856	< 0.028		< 0.016
		95Tree-4	0.843	0.094	± 0.011	0.055 ± 0.007

Table 1. Chemical recovery of ^{95m}Tc, concentration of ⁹⁹Tc and transfer factor in plant samples collected in forests within the 30-km zone around the Chernobyl Nuclear Power Plant.

Table 2. Transfer factors for Tc reported for various plants grown in soil.

Crop	TF	Conditions	Reference
Grass pasture mixture	6	Lysimeter	8
Herbaceous vegetation	6.7-22	Silt loam, Field	9
Grass	0.91-3.02	Reclaimed land, Field	10
Rye grass	44-371	Cambisol, Pot	11
Herbaceous vegetation	0.009-0.47	Podzol, Peat-gley, Field	This study