1,548 research outputs found

    Evolution of transport properties of BaFe2-xRuxAs2 in a wide range of isovalent Ru substitution

    Full text link
    The effects of isovalent Ru substitution at the Fe sites of BaFe2-xRuxAs2 are investigated by measuring resistivity and Hall coefficient on high-quality single crystals in a wide range of doping (0 < x < 1.4). Ru substitution weakens the antiferromagnetic (AFM) order, inducing superconductivity for relatively high doping level of 0.4 < x < 0.9. Near the AFM phase boundary, the transport properties show non-Fermi-liquid-like behaviors with a linear-temperature dependence of resistivity and a strong temperature dependence of Hall coefficient with a sign change. Upon higher doping, however, both of them recover conventional Fermi-liquid behaviors. Strong doping dependence of Hall coefficient together with a small magnetoresistance suggest that the anomalous transport properties can be explained in terms of anisotropic charge carrier scattering due to interband AFM fluctuations rather than a conventional multi-band scenario.Comment: 7 pages, 6 figures, submitted to Phys. Rev.

    MOVING TOWARD OPEN GEOSPATIAL SYSTEMS: THE UN OPEN GIS INITIATIVE

    Get PDF
    Abstract. The UN Open GIS Initiative is an ongoing Partnership Initiative leaded by the United Nations Geospatial Operations. The Initiative, established in March 2016, is supported by several UN Member States, UN Field Missions, UN Agencies and technology contributing partners (international organizations, academia, NGOs, and the private sector) and takes full advantage of their expertise.The target is the creation of an extended spatial data infrastructure that meets the requirements of the UN Secretariat (including UN field missions and regional commissions), and then expands to UN agencies, UN operating partners and developing countries. The paper presents the activities done in the past year and the status of the Initiative

    Electron-hole asymmetry in Co- and Mn-doped SrFe2As2

    Full text link
    Phase diagram of electron and hole-doped SrFe2As2 single crystals is investigated using Co and Mn substitution at the Fe-sites. We found that the spin-density-wave state is suppressed by both dopants, but the superconducting phase appears only for Co (electron)-doping, not for Mn (hole)-doping. Absence of the superconductivity by Mn-doping is in sharp contrast to the hole-doped system with K-substitution at the Sr sites. Distinct structural change, in particular the increase of the Fe-As distance by Mn-doping is important to have a magnetic and semiconducting ground state as confirmed by first principles calculations. The absence of electron-hole symmetry in the Fe-site-doped SrFe2As2 suggests that the occurrence of high-Tc superconductivity is sensitive to the structural modification rather than the charge doping.Comment: 7 pages, 6 figure

    Entanglement witnesses arising from Choi type positive linear maps

    Full text link
    We construct optimal PPTES witnesses to detect 333\otimes 3 PPT entangled edge states of type (6,8)(6,8) constructed recently \cite{kye_osaka}. To do this, we consider positive linear maps which are variants of the Choi type map involving complex numbers, and examine several notions related to optimality for those entanglement witnesses. Through the discussion, we suggest a method to check the optimality of entanglement witnesses without the spanning property.Comment: 18 pages, 4 figures, 1 tabl

    Oxide two-dimensional electron gas with high mobility at room-temperature

    Get PDF
    The prospect of 2‐dimensional electron gases (2DEGs) possessing high mobility at room temperature in wide‐bandgap perovskite stannates is enticing for oxide electronics, particularly to realize transparent and high‐electron mobility transistors. Nonetheless only a small number of studies to date report 2DEGs in BaSnO(3)‐based heterostructures. Here, 2DEG formation at the LaScO(3)/BaSnO(3) (LSO/BSO) interface with a room‐temperature mobility of 60 cm(2) V(−1) s(−1) at a carrier concentration of 1.7 × 10(13) cm(–2) is reported. This is an order of magnitude higher mobility at room temperature than achieved in SrTiO(3)‐based 2DEGs. This is achieved by combining a thick BSO buffer layer with an ex situ high‐temperature treatment, which not only reduces the dislocation density but also produces a SnO(2)‐terminated atomically flat surface, followed by the growth of an overlying BSO/LSO interface. Using weak beam dark‐field transmission electron microscopy imaging and in‐line electron holography technique, a reduction of the threading dislocation density is revealed, and direct evidence for the spatial confinement of a 2DEG at the BSO/LSO interface is provided. This work opens a new pathway to explore the exciting physics of stannate‐based 2DEGs at application‐relevant temperatures for oxide nanoelectronics

    Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects

    Full text link
    We investigated a switchable ferroelectric diode effect and its physical mechanism in Pt/BiFeO3/SrRuO3 thin-film capacitors. Our results of electrical measurements support that, near the Pt/BiFeO3 interface of as-grown samples, a defective layer (possibly, an oxygen-vacancy-rich layer) becomes formed and disturbs carrier injection. We therefore used an electrical training process to obtain ferroelectric control of the diode polarity where, by changing the polarization direction using an external bias, we could switch the transport characteristics between forward and reverse diodes. Our system is characterized with a rectangular polarization hysteresis loop, with which we confirmed that the diode polarity switching occurred at the ferroelectric coercive voltage. Moreover, we observed a simultaneous switching of the diode polarity and the associated photovoltaic response dependent on the ferroelectric domain configurations. Our detailed study suggests that the polarization charge can affect the Schottky barrier at the ferroelectric/metal interfaces, resulting in a modulation of the interfacial carrier injection. The amount of polarization-modulated carrier injection can affect the transition voltage value at which a space-charge-limited bulk current-voltage (J-V) behavior is changed from Ohmic (i.e., J ~ V) to nonlinear (i.e., J ~ V^n with n \geq 2). This combination of bulk conduction and polarization-modulated carrier injection explains the detailed physical mechanism underlying the switchable diode effect in ferroelectric capacitors.Comment: Accepted for publication in Phys. Rev.

    Quantitative measurements of the thermopower of Andreev interferometers

    Full text link
    Using a new second derivative technique and thermometers which enable us to determine the local electron temperature in a mesoscopic metallic sample, we have obtained quantitative measurements of the low temperature field and temperature dependent thermopower of Andreev interferometers. As in previous experiments, the thermopower is found to oscillate as a function of magnetic field. The temperature dependence of the thermopower is nonmonotonic, with a minimum at a temperature of 0.5\simeq0.5 K. These results are discussed from the perspective of Andreev reflection at the normal-metal/superconductor interface.Comment: 6 pages, 4 figure

    The components of empirical multifractality in financial returns

    Full text link
    We perform a systematic investigation on the components of the empirical multifractality of financial returns using the daily data of Dow Jones Industrial Average from 26 May 1896 to 27 April 2007 as an example. The temporal structure and fat-tailed distribution of the returns are considered as possible influence factors. The multifractal spectrum of the original return series is compared with those of four kinds of surrogate data: (1) shuffled data that contain no temporal correlation but have the same distribution, (2) surrogate data in which any nonlinear correlation is removed but the distribution and linear correlation are preserved, (3) surrogate data in which large positive and negative returns are replaced with small values, and (4) surrogate data generated from alternative fat-tailed distributions with the temporal correlation preserved. We find that all these factors have influence on the multifractal spectrum. We also find that the temporal structure (linear or nonlinear) has minor impact on the singularity width Δα\Delta\alpha of the multifractal spectrum while the fat tails have major impact on Δα\Delta\alpha, which confirms the earlier results. In addition, the linear correlation is found to have only a horizontal translation effect on the multifractal spectrum in which the distance is approximately equal to the difference between its DFA scaling exponent and 0.5. Our method can also be applied to other financial or physical variables and other multifractal formalisms.Comment: 6 epl page
    corecore