268,003 research outputs found

    The finite-temperature thermodynamics of a trapped unitary Fermi gas within fractional exclusion statistics

    Full text link
    We utilize a fractional exclusion statistics of Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behavior, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behavior of the isochore heat capacity for a trapped unitary Fermi gas is also analyzed.Comment: 6 pages, 6 figure

    Systematic review and quality analysis of emerging diagnostic measures for calcium pyrophosphate crystal deposition disease.

    Get PDF
    ObjectivesCalcium pyrophosphate crystal deposition disease (CPPD) is common, yet prevalence and overall clinical impact remain unclear. Sensitivity and specificity of CPPD reference standards (conventional crystal analysis (CCA) and radiography (CR)) were meta-analysed by EULAR (published 2011). Since then, new diagnostic modalities are emerging. Hence, we updated 2009-2016 literature findings by systematic review and evidence grading, and assessed unmet needs.MethodsWe performed systematic search of full papers (PubMed, Scopus/EMBASE, Cochrane 2009-2016 databases). Search terms included CPPD, chondrocalcinosis, pseudogout, ultrasound, MRI, dual energy CT (DECT). Paper selection, data abstraction, EULAR evidence level, and Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 bias and applicability grading were performed independently by 3 authors.ResultsWe included 26 of 111 eligible papers, which showed emergence in CPPD diagnosis of ultrasound (U/S), and to lesser degree, DECT and Raman spectroscopy. U/S detected CPPD crystals in peripheral joints with sensitivity >80%, superior to CR. However, most study designs, though analytical, yielded low EULAR evidence level. DECT was marginally explored for CPPD, compared with 35 published DECT studies in gout. QUADAS-2 grading indicated strong applicability of U/S, DECT and Raman spectroscopy, but high study bias risk (in ∼30% of papers) due to non-controlled designs, and non-randomised subject selection.ConclusionsThough CCA and CR remain reference standards for CPPD diagnosis, U/S, DECT and Raman spectroscopy are emerging U/S sensitivity appears to be superior to CR. We identified major unmet needs, including for randomised, blinded, controlled studies of CPPD diagnostic performance and rigorous analyses of 4 T MRI and other emerging modalities

    Lasant Materials for Blackbody-Pumped Lasers

    Get PDF
    Blackbody-pumped solar lasers are proposed to convert sunlight into laser power to provide future space power and propulsion needs. There are two classes of blackbody-pumped lasers. The direct cavity-pumped system in which the lasant molecule is vibrationally excited by the absorption of blackbody radiation and laser, all within the blackbody cavity. The other system is the transfer blackbody-pumped laser in which an absorbing molecule is first excited within the blackbody cavity, then transferred into a laser cavity when an appropriate lasant molecule is mixed. Collisional transfer of vibrational excitation from the absorbing to the lasing molecule results in laser emission. A workshop was held at NASA Langley Research Center to investigate new lasant materials for both of these blackbody systems. Emphasis was placed on the physics of molecular systems which would be appropriate for blackbody-pumped lasers

    Isotope separation using metallic vapor lasers

    Get PDF
    The isotope U235 is separated from a gasified isotope mixture of U235 and U238 by selectively exciting the former from the ground state utilizing resonant absorption of radiation from precisely tuned lasers. The excited isotope is then selectively ionized by electron bombardment. It then is separated from the remaining isotope mixture by electromagnetic separation

    Cavity-Enhanced Ultrafast Transient Absorption Spectroscopy

    Full text link
    We present a new technique using a frequency comb laser and optical cavities for performing ultrafast transient absorption spectroscopy with improved sensitivity. Resonantly enhancing the probe pulses, we demonstrate a sensitivity of Δ\DeltaOD = 1 \times 10^{-9}/\sqrt{\mbox{Hz}} for averaging times as long as 30 s per delay point (Δ\DeltaODmin=2×1010_{min} = 2 \times 10^{-10}). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD 108\approx 10^{-8}, or column densities <1010< 10^{10} molecules/cm2^2. This high sensitivity enables new directions for ultrafast spectroscopy

    Adhesion-induced lateral phase separation of multi-component membranes: the effect of repellers and confinement

    Full text link
    We present a theoretical study for adhesion-induced lateral phase separation for a membrane with short stickers, long stickers and repellers confined between two hard walls. The effects of confinement and repellers on lateral phase separation are investigated. We find that the critical potential depth of the stickers for lateral phase separation increases as the distance between the hard walls decreases. This suggests confinement-induced or force-induced mixing of stickers. We also find that stiff repellers tend to enhance, while soft repellers tend to suppress adhesion-induced lateral phase separation

    Design of an instrumented smart cutting tool and its implementation and application perspectives

    Get PDF
    This paper presents an innovative design of a smart cutting tool, using two surface acoustic wave (SAW) strain sensors mounted onto the top and the side surface of the tool shank respectively, and its implementation and application perspectives. This surface acoustic wave-based smart cutting tool is capable of measuring the cutting force and the feed force in a real machining environment, after a calibration process under known cutting conditions. A hybrid dissimilar workpiece is then machined using the SAW-based smart cutting tool. The hybrid dissimilar material is made of two different materials, NiCu alloy (Monel) and steel, welded together to form a single bar; this can be used to simulate an abrupt change in material properties. The property transition zone is successfully detected by the tool; the sensor feedback can then be used to initiate a change in the machining parameters to compensate for the altered material properties.The UK Technology Strategy Board (TSB) for supporting this research (SEEM Project, contract No. BD266E

    A groove GaInAsP laser on semi-insulating InP using a laterally diffused junction

    Get PDF
    Low threshold current GaInAsP/InP groove lasers have been fabricated on semi-insulating InP substrates. Three n-type layers are grown with a single liquid phase epitaxial (LPE) growth process, and the p-n junction is formed by a lateral Zn diffusion. The active layer inside the groove provides a real index waveguide. Threshold currents as low as 14 mA with 300 μm cavity length are obtained. A single longitudinal mode at 1.3 μm up to1.4 I_{TH}is observed. The lasers operate with a single lateral mode when the active region width is less than 2.5 μm. This laser is suitable for monolithic integration with other optoelectronic devices
    corecore