19,831 research outputs found

    Anomalies and Hawking radiation from the Reissner-Nordstr\"om black hole with a global monopole

    Full text link
    We extend the work by S. Iso, H. Umetsu and F. Wilczek [Phys. Rev. Lett. 96 (2006) 151302] to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole space-time with the determinant of its diagonal metric differing from the unity (−g≠1\sqrt{-g} \neq 1) and use it to investigate Hawking radiation from the Reissner-Nordstrom black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the (1+1)(1+1)-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon.Comment: 18 pages, 0 figure. 1 footnote and 4 new reference adde

    ACO-RR: Ant Colony Optimization Ridge Regression in Reuse of Smart City System

    Full text link
    © 2019, Springer Nature Switzerland AG. With the rapid development of artificial intelligence, governments of different countries have been focusing on building smart cities. To build a smart city is a system construction process which not only requires a lot of human and material resources, but also takes a long period of time. Due to the lack of enough human and material resources, it is a key challenge for lots of small and medium-sized cities to develop the intelligent construction, compared with the large cities with abundant resources. Reusing the existing smart city system to assist the intelligent construction of the small and medium-sizes cities is a reasonable way to solve this challenge. Following this idea, we propose a model of Ant Colony Optimization Ridge Regression (ACO-RR), which is a smart city evaluation method based on the ridge regression. The model helps small and medium-sized cities to select and reuse the existing smart city systems according to their personalized characteristics from different successful stories. Furthermore, the proposed model tackles the limitation of ridge parameters’ selection affecting the stability and generalization ability, because the parameters of the traditional ridge regression is manually random selected. To evaluate our model performance, we conduct experiments on real-world smart city data set. The experimental results demonstrate that our model outperforms the baseline methods, such as support vector machine and neural network

    Tunable Surface Conductivity in Bi2Se3 Revealed in Diffusive Electron Transport

    Full text link
    We demonstrate that the weak antilocalization effect can serve as a convenient method for detecting decoupled surface transport in topological insulator thin films. In the regime where a bulk Fermi surface coexists with the surface states, the low field magnetoconductivity is described well by the Hikami-Larkin-Nagaoka equation for single component transport of non-interacting electrons. When the electron density is lowered, the magnetotransport behavior deviates from the single component description and strong evidence is found for independent conducting channels at the bottom and top surfaces. The magnetic-field-dependent part of corrections to conductivity due to the Zeeman energy is shown to be negligible despite non-negligible electron-electron interactions.Comment: 5 pages, 3 figures. For comments and questions, please contact: [email protected]

    Cosmological Constraint and Analysis on Holographic Dark Energy Model Characterized by the Conformal-age-like Length

    Full text link
    We present a best-fit analysis on the single-parameter holographic dark energy model characterized by the conformal-age-like length, L=1a4(t)∫0tdt′a3(t′)L=\frac{1}{a^4(t)}\int_0^tdt' a^3(t') . Based on the Union2 compilation of 557 supernova Ia data, the baryon acoustic oscillation results from the SDSS DR7 and the cosmic microwave background radiation data from the WMAP7, we show that the model gives the minimal χmin2=546.273\chi^2_{min}=546.273, which is comparable to χΛCDM2=544.616\chi^2_{\Lambda{\rm CDM}}=544.616 for the Λ\LambdaCDM model. The single parameter dd concerned in the model is found to be d=0.232±0.006±0.009d=0.232\pm 0.006\pm 0.009. Since the fractional density of dark energy Ωde∼d2a2\Omega_{de}\sim d^2a^2 at a≪1a \ll 1, the fraction of dark energy is naturally negligible in the early universe, Ωde≪1\Omega_{de} \ll 1 at a≪1a \ll 1. The resulting constraints on the present fractional energy density of matter and the equation of state are \Omega_{m0}=0.286^{+0.019}_{-0.018}^{+0.032}_{-0.028} and w_{de0}=-1.240^{+0.027}_{-0.027}^{+0.045}_{-0.044} respectively. The model leads to a slightly larger fraction of matter comparing to the Λ\LambdaCDM model. We also provide a systematic analysis on the cosmic evolutions of the fractional energy density of dark energy, the equation of state of dark energy, the deceleration parameter and the statefinder. It is noticed that the equation of state crosses from wde>−1w_{de}>-1 to wde<−1w_{de}<-1, the universe transits from decelerated expansion (q>0q>0) to accelerated expansion (q<0q<0) recently, and the statefinder may serve as a sensitive diagnostic to distinguish the CHDE model with the Λ\LambdaCDM model.Comment: 17 pages, 5 figures, minor changes for the fitting data, references adde

    Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    Get PDF
    Cataloged from PDF version of article.Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm. (C) 2014 AIP Publishing LLC

    Variation of the Fine-Structure Constant from the de Sitter Invariant Special Relativity

    Get PDF
    There are obvious discrepancies among various experimental constraints on the variation of the fine-structure constant, α\alpha. We attempt to discuss the issue in the framework of de Sitter invariant Special Relativity (SRc,R{\cal SR}_{c,R}) and to present a possible solution to the disagreement. In addition, on the basis of the observational data and the discussions presented in this Letter, we derive a rough theoretical estimate of the radius of the Universe.Comment: 8 pages, no figure
    • …
    corecore