3,387 research outputs found

    New Predictions for Electroweak O(\alpha) Corrections to Neutrino--Nucleon Scattering

    Full text link
    We calculate the O(\alpha) electroweak corrections to charged- and neutral-current deep-inelastic neutrino scattering off an isoscalar target. The full one-loop-corrected cross sections, including hard photonic corrections, are evaluated and compared to an earlier result which is the basis of the NuTeV analysis. In particular, we compare results that differ in input-parameter scheme, treatment of real photon radiation and factorization scheme. The associated shifts in the theoretical prediction for the ratio of neutral- and charged-current cross sections can be larger than the experimental accuracy of the NuTeV result.Comment: 3 pages, in collaboration with S. Dittmaier and W. Hollik, proceedings contribution to International Europhysics Conference on High Energy Physics, EPS (July 17th-23rd 2003) in Aachen, German

    New, efficient, and accurate high order derivative and dissipation operators satisfying summation by parts, and applications in three-dimensional multi-block evolutions

    Full text link
    We construct new, efficient, and accurate high-order finite differencing operators which satisfy summation by parts. Since these operators are not uniquely defined, we consider several optimization criteria: minimizing the bandwidth, the truncation error on the boundary points, the spectral radius, or a combination of these. We examine in detail a set of operators that are up to tenth order accurate in the interior, and we surprisingly find that a combination of these optimizations can improve the operators' spectral radius and accuracy by orders of magnitude in certain cases. We also construct high-order dissipation operators that are compatible with these new finite difference operators and which are semi-definite with respect to the appropriate summation by parts scalar product. We test the stability and accuracy of these new difference and dissipation operators by evolving a three-dimensional scalar wave equation on a spherical domain consisting of seven blocks, each discretized with a structured grid, and connected through penalty boundary conditions.Comment: 16 pages, 9 figures. The files with the coefficients for the derivative and dissipation operators can be accessed by downloading the source code for the document. The files are located in the "coeffs" subdirector

    Note on CKM Matrix Renormalization

    Full text link
    A simple inspection of the one loop quark self-energy suggests a prescription of the CKM matrix renormalization in the standard model. It leads to a CKM matrix counterterm which is gauge parameter independent and satisfies the unitarity constraint, and renormalized physical amplitudes which are gauge parameter independent and smooth in quark mass difference. We make a point that caution should be practiced when interpreting the CKM martix counterterm in terms of those of parameters in a given representation due to rephasing effects from renormalization. We show how this can be done using the degrees of freedom in the on-shell renormalization scheme.Comment: version 1: 10 pages, no figures; version 2: proofread version for Phys Rev D with minor revisions: (1) divided into 3 sections; (2) added a footnote Comment on Ref. [8] as Ref. item [13]; (3) typos fixed and minor rewordin

    Computational Relativistic Astrophysics With Adaptive Mesh Refinement: Testbeds

    Full text link
    We have carried out numerical simulations of strongly gravitating systems based on the Einstein equations coupled to the relativistic hydrodynamic equations using adaptive mesh refinement (AMR) techniques. We show AMR simulations of NS binary inspiral and coalescence carried out on a workstation having an accuracy equivalent to that of a 102531025^3 regular unigrid simulation, which is, to the best of our knowledge, larger than all previous simulations of similar NS systems on supercomputers. We believe the capability opens new possibilities in general relativistic simulations.Comment: 7 pages, 16 figure

    Immunoproteasomes largely replace constitutive proteasomes during an antiviral and antibacterial immune response in the liver

    Full text link
    The proteasome is critically involved in the production of MHC class I-restricted T cell epitopes. Proteasome activity and epitope production are altered by IFN-gamma treatment, which leads to a gradual replacement of constitutive proteasomes by immunoproteasomes in vitro. However, a quantitative analysis of changes in the steady state subunit composition of proteasomes during an immune response against viruses or bacteria in vivo has not been reported. Here we show that the infection of mice with lymphocytic choriomeningitis virus or Listeria monocytogenes leads to an almost complete replacement of constitutive proteasomes by immunoproteasomes in the liver within 7 days. Proteasome replacements were markedly reduced in IFN-gamma(-/-) mice, but were only slightly affected in IFN-alphaR(-/-) and perforin(-/-) mice. The proteasome regulator PA28alpha/beta was up-regulated, whereas PA28gamma was reduced in the liver of lymphocytic choriomeningitis virus-infected mice. Proteasome replacements in the liver strongly altered proteasome activity and were unexpected to this extent, since an in vivo half-life of 12 days had been previously assigned to constitutive proteasomes in the liver. Our results suggest that during the peak phase of viral and bacterial elimination the antiviral cytotoxic T lymphocyte response is directed mainly to immunoproteasome-dependent T cell epitopes, which would be a novel parameter for the design of vaccines

    The MUSE-Wide Survey: A first catalogue of 831 emission line galaxies

    Get PDF
    We present a first instalment of the MUSE-Wide survey, covering an area of 22.2 arcmin2^2 (corresponding to \sim20% of the final survey) in the CANDELS/Deep area of the Chandra Deep Field South. We use the MUSE integral field spectrograph at the ESO VLT to conduct a full-area spectroscopic mapping at a depth of 1h exposure time per 1 arcmin2^2 pointing. We searched for compact emission line objects using our newly developed LSDCat software based on a 3-D matched filtering approach, followed by interactive classification and redshift measurement of the sources. Our catalogue contains 831 distinct emission line galaxies with redshifts ranging from 0.04 to 6. Roughly one third (237) of the emission line sources are Lyman α\alpha emitting galaxies with 3<z<63 < z < 6, only four of which had previously measured spectroscopic redshifts. At lower redshifts 351 galaxies are detected primarily by their [OII] emission line (0.3z1.50.3 \lesssim z \lesssim 1.5), 189 by their [OIII] line (0.21z0.850.21 \lesssim z \lesssim 0.85), and 46 by their Hα\alpha line (0.04z0.420.04 \lesssim z \lesssim 0.42). Comparing our spectroscopic redshifts to photometric redshift estimates from the literature, we find excellent agreement for z<1.5z<1.5 with a median Δz\Delta z of only 4×104\sim 4 \times 10^{-4} and an outlier rate of 6%, however a significant systematic offset of Δz=0.26\Delta z = 0.26 and an outlier rate of 23% for Lyα\alpha emitters at z>3z>3. Together with the catalogue we also release 1D PSF-weighted extracted spectra and small 3D datacubes centred on each of the 831 sources.Comment: 24 pages, 14 figures, accepted for publication in A&A, data products are available for download from http://muse-vlt.eu/science/muse-wide-survey/ and later via the CD

    Electroweak higher-order effects and theoretical uncertainties in deep-inelastic neutrino scattering

    Full text link
    A previous calculation of electroweak O(alpha) corrections to deep-inelastic neutrino scattering, as e.g. measured by NuTeV and NOMAD, is supplemented by higher-order effects. In detail, we take into account universal two-loop effects from \Delta\alpha and \Delta\rho as well as higher-order final-state photon radiation off muons in the structure function approach. Moreover, we make use of the recently released O(alpha)-improved parton distributions MRST2004QED and identify the relevant QED factorization scheme, which is DIS like. As a technical byproduct, we describe slicing and subtraction techniques for an efficient calculation of a new type of real corrections that are induced by the generated photon distribution. A numerical discussion of the higher-order effects suggests that the remaining theoretical uncertainty from unknown electroweak corrections is dominated by non-universal two-loop effects and is of the order 0.0003 when translated into a shift in sin^2\theta_W=1-MW^2/MZ^2. The O(alpha) corrections implicitly included in the parton distributions lead to a shift of about 0.0004.Comment: 25 pages, latex, 8 postscript figure

    Revisiting Event Horizon Finders

    Full text link
    Event horizons are the defining physical features of black hole spacetimes, and are of considerable interest in studying black hole dynamics. Here, we reconsider three techniques to localise event horizons in numerical spacetimes: integrating geodesics, integrating a surface, and integrating a level-set of surfaces over a volume. We implement the first two techniques and find that straightforward integration of geodesics backward in time to be most robust. We find that the exponential rate of approach of a null surface towards the event horizon of a spinning black hole equals the surface gravity of the black hole. In head-on mergers we are able to track quasi-normal ringing of the merged black hole through seven oscillations, covering a dynamic range of about 10^5. Both at late times (when the final black hole has settled down) and at early times (before the merger), the apparent horizon is found to be an excellent approximation of the event horizon. In the head-on binary black hole merger, only {\em some} of the future null generators of the horizon are found to start from past null infinity; the others approach the event horizons of the individual black holes at times far before merger.Comment: 30 pages, 15 figures, revision

    Generic Tracking of Multiple Apparent Horizons with Level Flow

    Get PDF
    We report the development of the first apparent horizon locator capable of finding multiple apparent horizons in a ``generic'' numerical black hole spacetime. We use a level-flow method which, starting from a single arbitrary initial trial surface, can undergo topology changes as it flows towards disjoint apparent horizons if they are present. The level flow method has two advantages: 1) The solution is independent of changes in the initial guess and 2) The solution can have multiple components. We illustrate our method of locating apparent horizons by tracking horizon components in a short Kerr-Schild binary black hole grazing collision.Comment: 13 pages including figures, submitted to Phys Rev

    Three-dimensional adaptive evolution of gravitational waves in numerical relativity

    Get PDF
    Adaptive techniques are crucial for successful numerical modeling of gravitational waves from astrophysical sources such as coalescing compact binaries, since the radiation typically has wavelengths much larger than the scale of the sources. We have carried out an important step toward this goal, the evolution of weak gravitational waves using adaptive mesh refinement in the Einstein equations. The 2-level adaptive simulation is compared with unigrid runs at coarse and fine resolution, and is shown to track closely the features of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical Review
    corecore