202,199 research outputs found
Approaches and tools to manipulate the carbonate chemistry
Although the chemistry of ocean acidifi cation is very well understood (see chapter 1), its impact on marine organisms and ecosystems remains poorly known. The biological response to ocean acidifi cation is a recent field
of research, the fi rst purposeful experiments have only been carried out as late as the 1980s (Agegian, 1985)
and most were not performed until the late 1990s. The potentially dire consequences of ocean acidifi cation
have attracted the interest of scientists and students with a limited knowledge of the carbonate chemistry and
its experimental manipulation. Perturbation experiments are one of the key approaches used to investigate
the biological response to elevated p(CO2). Such experiments are based on measurements of physiological or
metabolic processes in organisms and communities exposed to seawater with normal and altered carbonate chemistry. The basics of the carbonate chemistry must be understood to perform meaningful CO2 perturbation experiments (see chapter 1). Briefl y, the marine carbonate system considers
€ CO2 ∗(aq) [the sum of CO2 and H2CO3], € HCO3 −, € CO3 2−,
H+, € OH− , and several weak acid-base systems of which borate-boric acid (€ B(OH)4 − , B(OH)3) is the most
important. As discussed by Dickson (chapter 1), if two components of the carbonate chemistry are known, all
the other components can be calculated for seawater with typical nutrient concentrations at given temperature,
salinity, and pressure. One of the possible pairs is of particular interest because both components can be
measured with precision, accuracy, and are conservative in the sense that their concentrations do not change
with temperature or pressure. Dissolved inorganic carbon (DIC) is the sum of all dissolved inorganic carbon
species while total alkalinity (AT) equals € [HCO3 − ] + 2
€ [CO3 2− ] + € [B(OH)4 − ] + € [OH− ] - [H+] + minor components, and refl ects the excess of proton acceptors over proton donors with respect to a zero level of protons (see chapter 1 for a detailed defi nition). AT is determined by the titration of seawater with a strong acid and thus can also be regarded as a measure of the buffering capacity. Any changes in any single component of the carbonate system will lead to changes in several, if not all, other components. In other words, it is not possible to vary a single component of the carbonate system while keeping all other components constant. This interdependency
in the carbonate system is important to consider when performing CO2 perturbation experiments.
To adjust seawater to different p(CO2) levels, the carbonate system can be manipulated in various ways that
usually involve changes in AT or DIC. The goal of this chapter is (1) to examine the benefi ts and drawbacks of
various manipulation methods used to date and (2) to provide a simple software package to assist the design
of perturbation experiments
Design sensitivity analysis using EAL. Part 1: Conventional design parameters
A numerical implementation of design sensitivity analysis of builtup structures is presented, using the versatility and convenience of an existing finite element structural analysis code and its database management system. The finite element code used in the implemenatation presented is the Engineering Analysis Language (EAL), which is based on a hybrid method of analysis. It was shown that design sensitivity computations can be carried out using the database management system of EAL, without writing a separate program and a separate database. Conventional (sizing) design parameters such as cross-sectional area of beams or thickness of plates and plane elastic solid components are considered. Compliance, displacement, and stress functionals are considered as performance criteria. The method presented is being extended to implement shape design sensitivity analysis using a domain method and a design component method
Metallic characteristics in superlattices composed of insulators, NdMnO3/SrMnO3/LaMnO3
We report on the electronic properties of superlattices composed of three
different antiferromagnetic insulators, NdMnO3/SrMnO3/LaMnO3 grown on SrTiO3
substrates. Photoemission spectra obtained by tuning the x-ray energy at the Mn
2p -> 3d edge show a Fermi cut-off, indicating metallic behavior mainly
originating from Mn e_g electrons. Furthermore, the density of states near the
Fermi energy and the magnetization obey a similar temperature dependence,
suggesting a correlation between the spin and charge degrees of freedom at the
interfaces of these oxides
Interaction of topological solitons with defects: using a nontrivial metric
By including potential into the flat metric, we study interaction of
sine-Gordon soliton with potentials. We will show numerically that while the
soliton-barrier system shows fully classical behaviour, the soliton-well system
demonstrates non-classical behaviour. In particular, solitons with low
velocities are trapped in the well and emit energy radiation.Comment: 10 pages, 11 figure
Robustness of the avalanche dynamics in data packet transport on scale-free networks
We study the avalanche dynamics in the data packet transport on scale-free
networks through a simple model. In the model, each vertex is assigned a
capacity proportional to the load with a proportionality constant . When
the system is perturbed by a single vertex removal, the load of each vertex is
redistributed, followed by subsequent failures of overloaded vertices. The
avalanche size depends on the parameter as well as which vertex triggers
it. We find that there exists a critical value at which the avalanche
size distribution follows a power law. The critical exponent associated with it
appears to be robust as long as the degree exponent is between 2 and 3, and is
close in value to that of the distribution of the diameter changes by single
vertex removal.Comment: 5 pages, 7 figures, final version published in PR
Intrinsic degree-correlations in static model of scale-free networks
We calculate the mean neighboring degree function and
the mean clustering function of vertices with degree as a function
of in finite scale-free random networks through the static model. While
both are independent of when the degree exponent , they show
the crossover behavior for from -independent behavior for
small to -dependent behavior for large . The -dependent behavior
is analytically derived. Such a behavior arises from the prevention of
self-loops and multiple edges between each pair of vertices. The analytic
results are confirmed by numerical simulations. We also compare our results
with those obtained from a growing network model, finding that they behave
differently from each other.Comment: 8 page
Soliton Resonances for MKP-II
Using the second flow - the Derivative Reaction-Diffusion system, and the
third one of the dissipative SL(2,R) Kaup-Newell hierarchy, we show that the
product of two functions, satisfying those systems is a solution of the
modified Kadomtsev-Petviashvili equation in 2+1 dimension with negative
dispersion (MKP-II). We construct Hirota's bilinear representation for both
flows and combine them together as the bilinear system for MKP-II. Using this
bilinear form we find one and two soliton solutions for the MKP-II. For special
values of parameters our solution shows resonance behaviour with creation of
four virtual solitons. Our approach allows one to interpret the resonance
soliton as a composite object of two dissipative solitons in 1+1 dimensions.Comment: 11 pages, 2 figures, Talk on International Conference "Nonlinear
Physics. Theory and Experiment. III", 24 June-3 July, 2004, Gallipoli(Lecce),
Ital
One-dimensional transport in polymer nanofibers
We report our transport studies in quasi one-dimensional (1D) conductors -
helical polyacetylene fibers doped with iodine and the data analysis for other
polymer single fibers and tubes. We found that at 30 K < T < 300 K the
conductance and the current-voltage characteristics follow the power law: G(T)
~ T^alpha with alpha ~ 2.2-7.2 and I(V) ~ V^betta with betta ~ 2-5.7. Both G(T)
and I(V) show the features characteristic of 1D systems such as Luttinger
liquid or Wigner crystal. The relationship between our results and theories for
tunneling in 1D systems is discussed.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Letter
First axion dark matter search with toroidal geometry
We firstly report an axion haloscope search with toroidal geometry. In this
pioneering search, we exclude the axion-photon coupling
down to about GeV over the axion mass range from 24.7
to 29.1 eV at a 95\% confidence level. The prospects for axion dark matter
searches with larger scale toroidal geometry are also considered.Comment: 5 pages, 5 figures, 1 table and to appear in PRD-R
- …