97 research outputs found
Unoccupied states of individual silver clusters and chains on Ag(111)
Size-selected silver clusters on Ag(111) were fabricated with the tip of a
scanning tunneling microscope. Unoccupied electron resonances give rise to
image contrast and spectral features which shift toward the Fermi level with
increasing cluster size. Linear assemblies exhibit higher resonance energies
than equally sized compact assemblies. Density functional theory calculations
reproduce the observed energies and enable an assignment of the resonances to
hybridized atomic 5s and 5p orbitals with silver substrate states.Comment: 9 pages, 8 figure
Ultrafast X-ray scattering of xenon nanoparticles: imaging transient states of matter
Sem informaçãoFemtosecond x-ray laser flashes with power densities of up to 10(14) W/cm(2) at 13.7 nm wavelength were scattered by single xenon clusters in the gas phase. Similar to light scattering from atmospheric microparticles, the x-ray diffraction patterns carry information about the optical constants of the objects. However, the high flux of the x-ray laser induces severe transient changes of the electronic configuration, resulting in a tenfold increase of absorption in the developing nanoplasma. The modification in opaqueness can be correlated to strong atomic charging of the particle leading to excitation of Xe4+. It is shown that single-shot single-particle scattering on femtosecond time scales yields insight into ultrafast processes in highly excited systems where conventional spectroscopy techniques are inherently blind.Femtosecond x-ray laser flashes with power densities of up to 10(14) W/cm(2) at 13.7 nm wavelength were scattered by single xenon clusters in the gas phase. Similar to light scattering from atmospheric microparticles, the x-ray diffraction patterns carry information about the optical constants of the objects. However, the high flux of the x-ray laser induces severe transient changes of the electronic configuration, resulting in a tenfold increase of absorption in the developing nanoplasma. The modification in opaqueness can be correlated to strong atomic charging of the particle leading to excitation of Xe4+. It is shown that single-shot single-particle scattering on femtosecond time scales yields insight into ultrafast processes in highly excited systems where conventional spectroscopy techniques are inherently blind.108915Sem informaçãoSem informaçãoBMBF [05KS4KT1, 05KS7KT2]HGF Virtuelles Institut [VH-VI-103, VH-VI-302]Sem informaçãoWe would like to thank all staff at FLASH for their outstanding support. Funding is acknowledged from BMBF 05KS4KT1 and 05KS7KT2, as well as HGF Virtuelles Institut VH-VI-103 and VH-VI-302
Aromaticity in a Surface Deposited Cluster: Pd on TiO (110)
We report the presence of \sigma-aromaticity in a surface deposited cluster,
Pd on TiO (110). In the gas phase, Pd adopts a tetrahedral
structure. However, surface binding promotes a flat, \sigma-aromatic cluster.
This is the first time aromaticity is found in surface deposited clusters.
Systems of this type emerge as a promising class of catalyst, and so
realization of aromaticity in them may help to rationalize their reactivity and
catalytic properties, as a function of cluster size and composition.Comment: 4 pages, 3 figure
Size-Selected Ag Nanoparticles with Five-Fold Symmetry
Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications
Surface Deposition and Imaging of Large Ag Clusters Formed in He Droplets
The utility of a continuous beam of He droplets for the assembly and surface
deposition of Ag clusters, ~ 300 - 6 000, is studied with transmission
electron microscopy. Images of the clusters on amorphous carbon substrates
obtained at short deposition times have provided for a measure of the size
distribution of the metal clusters. The average sizes of the deposited clusters
are in good agreement with an energy balance based estimate of Ag cluster
growth in He droplets. Measurements of the deposition rate indicate that upon
impact with the surface the He-embedded cluster is attached with high
probability. The stability of the deposited clusters on the substrate is
discussed.Comment: 24 pages, 5 figure
Recommended from our members
Thomson Scattering at FLASH - Status Report
The basic idea is to implement Thomson scattering with free electron laser (FEL) radiation at near-solid density plasmas as a diagnostic method which allows the determination of plasma temperatures and densities in the warm dense matter (WDM) regime (free electron density of n{sub e} = 10{sup 21}-10{sup 26} cm{sup -3} with temperatures of several eV). The WDM regime [1] at near-solid density (n{sub e} = 10{sup 21}-10{sup 22} cm{sup -3}) is of special interest because, it is where the transition from an ideal plasma to a degenerate, strongly coupled plasma occurs. A systematic understanding of this largely unknown WDM domain is crucial for the modeling and understanding of contemporary plasma experiments, like laser shock-wave or Z-pinch experiments as well as for inertial confinement fusion (ICF) experiments as the plasma evolution follows its path through this domain
- …