4,546 research outputs found

    Study of nickel hydroxide electrodes. 2: Oxidation products of nickel (2) hydroxides

    Get PDF
    Pure phases of some oxidized Ni oxides were prepared galvanimetrically with the Ni(2) hydroxide electrode of an alkaline battery. The crystallographic data of these phases, their chemical behavior, and conditions of transition were studied

    Determination of the Her-2/neu gene amplification status in cytologic breast cancer specimens using automated silver-enhanced in-situ hybridization (SISH)

    Full text link
    Silver-enhanced in-situ hybridization (SISH) is an emerging tool for the determination of the Her-2/neu amplification status in breast cancer. SISH is technically comparable to fluorescence in-situ hybridization (FISH) but does not require a fluorescence microscope for its interpretation. Although recent studies on histologic evaluations of SISH are promising, we aimed to evaluate its performance on 71 cytologic breast cancer specimens with the new combined Her-2/Chr17 probe. Her-2/neu status as routinely determined by FISH was available for all patients. We found SISH signals in cytologic cell blocks and smear specimens easy to evaluate in most cases. Small numbers of tumor cells and difficulties in identifying tumor cells in lymphocyte-rich backgrounds were limiting factors. Her-2/neu status, as determined by Her-2/Chr17 SISH, was basically identical to the results of the corresponding FISH. The discrepancies were mainly owing to the heterogeneity of Her-2/neu amplification in the tumor tissue. Interobserver agreement for the SISH evaluation was high (kappa value: 0.972). We conclude that Her-2/Chr17 SISH is a useful and accurate method for the evaluation of the Her-2/neu gene amplification status in cytologic breast cancer specimens, particularly in metastatic breast cancer lesions. The advantages of signal permanency and bright-field microscopic result interpretation make this technique an attractive alternative to the current FISH-based gold standard

    Kramers-Kronig, Bode, and the meaning of zero

    Full text link
    The implications of causality, as captured by the Kramers-Kronig relations between the real and imaginary parts of a linear response function, are familiar parts of the physics curriculum. In 1937, Bode derived a similar relation between the magnitude (response gain) and phase. Although the Kramers-Kronig relations are an equality, Bode's relation is effectively an inequality. This perhaps-surprising difference is explained using elementary examples and ultimately traces back to delays in the flow of information within the system formed by the physical object and measurement apparatus.Comment: 8 pages; American Journal of Physics, to appea

    The Critical Hopping Parameter in O(a) improved Lattice QCD

    Full text link
    We calculate the critical value of the hopping parameter, Îşc\kappa_c, in O(a) improved Lattice QCD, to two loops in perturbation theory. We employ the Sheikholeslami-Wohlert (clover) improved action for Wilson fermions. The quantity which we study is a typical case of a vacuum expectation value resulting in an additive renormalization; as such, it is characterized by a power (linear) divergence in the lattice spacing, and its calculation lies at the limits of applicability of perturbation theory. The dependence of our results on the number of colors NN, the number of fermionic flavors NfN_f, and the clover parameter cSWc_{SW}, is shown explicitly. We compare our results to non perturbative evaluations of Îşc\kappa_c coming from Monte Carlo simulations.Comment: 11 pages, 2 EPS figures. The only change with respect to the original version is inclusion of the standard formulae for the gauge fixing and ghost parts of the action. Accepted for publication in Physical Review

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: III. X-ray spectral modelling

    Full text link
    Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.Comment: 13 pages, 5 figures, Accepted for publication in Ap

    Chandra detection of extended X-ray emission from the recurrent nova RS Ophiuchi

    Full text link
    Radio, infrared, and optical observations of the 2006 eruption of the symbiotic recurrent nova RS Ophiuchi (RS Oph) showed that the explosion produced non-spherical ejecta. Some of this ejected material was in the form of bipolar jets to the east and west of the central source. Here we describe Xray observations taken with the Chandra X-ray Observatory one and a half years after the beginning of the outburst that reveal narrow, extended structure with a position angle of approximately 300 degrees (east of north). Although the orientation of the extended feature in the X-ray image is consistent with the readout direction of the CCD detector, extensive testing suggests that the feature is not an artifact. Assuming it is not an instrumental effect, the extended X-ray structure shows hot plasma stretching more than 1,900 AU from the central binary (taking a distance of 1.6 kpc). The X-ray emission is elongated in the northwest direction - in line with the extended infrared emission and some minor features in the published radio image. It is less consistent with the orientation of the radio jets and the main bipolar optical structure. Most of the photons in the extended X-ray structure have energies of less than 0.8 keV. If the extended X-ray feature was produced when the nova explosion occurred, then its 1".2 length as of 2007 August implies that it expanded at an average rate of more than 2 mas/d, which corresponds to a flow speed of greater than 6,000 km/s (d/1.6 kpc) in the plane of the sky. This expansion rate is similar to the earliest measured expansion rates for the radio jets.Comment: accepted in Ap

    Rapid generation of all-optical K 39 Bose-Einstein condensates using a low-field Feshbach resonance

    Get PDF
    Ultracold potassium is an interesting candidate for quantum technology applications and fundamental research as it allows controlling intra-atomic interactions via low-field magnetic Feshbach resonances. However, the realization of high-flux sources of Bose-Einstein condensates remains challenging due to the necessity of optical trapping to use magnetic fields as free parameters. We investigate the production of all-optical K39 Bose-Einstein condensates with different scattering lengths using a Feshbach resonance near 33 G. By tuning the scattering length in a range between 75a0 and 300a0 we demonstrate a tradeoff between evaporation speed and final atom number and decrease our evaporation time by a factor of 5 while approximately doubling the evaporation flux. To this end, we are able to produce fully condensed ensembles with 5.8Ă—104 atoms within 850-ms evaporation time at a scattering length of 232a0 and 1.6Ă—105 atoms within 3.9s at 158a0, respectively. We deploy a numerical model to analyze the flux and atom number scaling with respect to scattering length, identify current limitations, and simulate the optimal performance of our setup. Based on our findings we describe routes towards high-flux sources of ultracold potassium for inertial sensing

    Seminome des Hodens : Klassisch und weniger klassisch

    Full text link
    Obwohl testikuläre Keimzelltumoren insgesamt selten sind, stellen sie bei jungen Männern die häufigste solide Neoplasie dar. Sie werden in Seminome und nichtseminomatöse Keimzelltumoren unterteilt. In der Regel ist die Diagnose eines Seminoms aufgrund der charakteristischen Morphologie einfach. Manchmal jedoch ergeben sich aufgrund ungewöhnlicher Wachstumsmuster differenzialdiagnostische Probleme bei der Abgrenzung zu nichtseminomatösen Keimzelltumoren, Keimstrang-Stroma-Tumoren, Lymphomen und nichtneoplastischen Veränderungen wie Narben und Entzündungen. In der vorliegenden Arbeit werden diese differenzialdiagnostischen Aspekte sowie aktuelle Überlegungen hinsichtlich prognostischer Faktoren von Seminomen vorgestellt und diskutiert. = Testicular germ cell tumors are generally rare but represent the most common solid neoplasms in young men. They are subdivided into seminomas and non-seminomatous germ cell tumors. Usually the diagnosis of a seminoma is straightforward due to the characteristic morphology, although problems in differential diagnosis can occur because of unusual histological growth patterns. This article describes the challenging differential diagnosis with respect to seminomas versus non-seminomatous germ cell tumors, sex cord stromal tumors, lymphomas and non-neoplastic conditions, such as scars and inflammatory changes. In addition, prognostic factors for seminomas are presented and discussed

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: II. 1D hydrodynamical models of wind driven shocks

    Full text link
    Following the early Swift X-ray observations of the latest outburst of the recurrent nova RS Ophiuchi in February 2006 (Paper I), we present new 1D hydrodynamical models of the system which take into account all three phases of the remnant evolution. The models suggest a novel way of modelling the system by treating the outburst as a sudden increase then decrease in wind mass-loss rate and velocity. The differences between this wind model and previous Primakoff-type simulations are described. A more complex structure, even in 1D, is revealed through the presence of both forward and reverse shocks, with a separating contact discontinuity. The effects of radiative cooling are investigated and key outburst parameters such as mass-loss rate, ejecta velocity and mass are varied. The shock velocities as a function of time are compared to the ones derived in Paper I. We show how the manner in which the matter is ejected controls the evolution of the shock and that for a well-cooled remnant, the shock deceleration rate depends on the amount of energy that is radiated away.Comment: 9 pages, 5 figure
    • …
    corecore