86 research outputs found

    Neurodegenerative Diseases of the Retina and Potential for Protection and Recovery

    Get PDF
    Recent advances in our understanding of the mechanisms in the cascade of events resulting in retinal cell death in ocular pathologies like glaucoma, diabetic retinopathy and age-related macular degeneration led to the common descriptive term of neurodegenerative diseases of the retina. The final common pathophysiologic pathway of these diseases includes a particular form of metabolic stress, resulting in an insufficient supply of nutrients to the respective target structures (optic nerve head, retina). During metabolic stress, glutamate is released initiating the death of neurones containing ionotropic glutamate (N-methyl-D-aspartat, NMDA) receptors present on ganglion cells and a specific type of amacrine cells. Experimental studies demonstrate that several drugs reduce or prevent the death of retinal neurones deficient of nutrients. These agents generally block NMDA receptors to prevent the action of glutamate or halt the subsequent pathophysiologic cycle resulting in cell death. The major causes for cell death following activation of NMDA receptors are the influx of calcium and sodium into cells, the generation of free radicals linked to the formation of advanced glycation endproducts (AGEs) and/or advanced lipoxidation endproducts (ALEs) as well as defects in the mitochondrial respiratory chain. Substances preventing these cytotoxic events are considered to be potentially neuroprotective

    Diversified actin protrusions promote environmental exploration but are dispensable for locomotion of leukocytes

    Get PDF
    Most migrating cells extrude their front by the force of actin polymerization. Polymerization requires an initial nucleation step, which is mediated by factors establishing either parallel filaments in the case of filopodia or branched filaments that form the branched lamellipodial network. Branches are considered essential for regular cell motility and are initiated by the Arp2/3 complex, which in turn is activated by nucleation-promoting factors of the WASP and WAVE families. Here we employed rapid amoeboid crawling leukocytes and found that deletion of the WAVE complex eliminated actin branching and thus lamellipodia formation. The cells were left with parallel filaments at the leading edge, which translated, depending on the differentiation status of the cell, into a unipolar pointed cell shape or cells with multiple filopodia. Remarkably, unipolar cells migrated with increased speed and enormous directional persistence, while they were unable to turn towards chemotactic gradients. Cells with multiple filopodia retained chemotactic activity but their migration was progressively impaired with increasing geometrical complexity of the extracellular environment. These findings establish that diversified leading edge protrusions serve as explorative structures while they slow down actual locomotion

    Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis.

    No full text
    Pancreatic beta-cells store insulin in secretory granules that undergo exocytosis upon glucose stimulation. Sustained stimulation depletes beta-cells of their granule pool, which must be quickly restored. However, the factors promoting rapid granule biogenesis are unknown. Here we show that beta-cell stimulation induces the nucleocytoplasmic translocation of polypyrimidine tract-binding protein (PTB). Activated cytosolic PTB binds and stabilizes mRNAs encoding proteins of secretory granules, thus increasing their translation, whereas knockdown of PTB expression by RNA interference (RNAi) results in the depletion of secretory granules. These findings may provide insight for the understanding and treatment of diabetes, in which insulin secretion is typically impaired

    ICA512 signaling enhances pancreatic -cell proliferation by regulating cyclins D through STATs

    No full text
    Changes in metabolic demands dynamically regulate the total mass of adult pancreatic β-cells to adjust insulin secretion and preserve glucose homeostasis. Glucose itself is a major regulator of β-cell proliferation by inducing insulin secretion and activating β-cell insulin receptors. Here, we show that islet cell autoantigen 512 (ICA512)/IA-2, an intrinsic tyrosine phosphatase-like protein of the secretory granules, activates a complementary pathway for β-cell proliferation. On granule exocytosis, the ICA512 cytoplasmic domain is cleaved and the resulting cytosolic fragment (ICA512-CCF) moves into the nucleus where it enhances the levels of phosphorylated STAT5 and STAT3, thereby inducing insulin gene transcription and granule biogenesis. We now show that knockdown of ICA512 decreases cyclin D1 levels and proliferation of insulinoma INS-1 cells, whereas β-cell regeneration is reduced in partially pancreatectomized ICA512(−/−) mice. Conversely, overexpression of ICA512-CCF increases both cyclin D1 and D2 levels and INS-1 cell proliferation. Up-regulation of cyclin D1 and D2 by ICA512-CCF is affected by knockdown of STAT3 and STAT5, respectively, whereas it does not require insulin signaling. These results identify ICA512 as a regulator of cyclins D and β-cell proliferation through STATs and may have implication for diabetes therapy

    Bestimmung von 3,4-Benzpyren in Brotgetreide

    No full text
    • …
    corecore