41,875 research outputs found
Water vapor diffusion membranes, 2
Transport mechanisms were investigated for the three different types of water vapor diffusion membranes. Membranes representing porous wetting and porous nonwetting structures as well as dense diffusive membrane structures were investigated for water permeation rate as a function of: (1) temperature, (2) solids composition in solution, and (3) such hydrodynamic parameters as sweep gas flow rate, solution flow rate and cell geometry. These properties were measured using nitrogen sweep gas to collect the effluent. In addition, the chemical stability to chromic acid-stabilized urine was measured for several of each type of membrane. A technology based on the mechanism of vapor transport was developed, whereby the vapor diffusion rates and relative susceptibility of membranes to fouling and failure could be projected for long-term vapor recovery trials using natural chromic acid-stabilized urine
Recommended from our members
Generation of periodic surface structures on silica fibre surfaces using 405 nm CW diode lasers
Periodic surface structures have been observed on the end surfaces of synthetic silica fibres when they are exposed to long-term irradiation with light from a 405 nm CW diode laser. The surface structures are generated when the laser power is at a level which is three magnitudes of order lower than that of the damage threshold. They exhibit multiple bends, break-ups and bifurcations, unlike interference patterns but rather like the effect caused by short-pulsed laser irradiation on wide band-gap insulators. The detailed investigation undertaken in this work has concluded that the key parameters that contribute to the generation of the surface structures are power density, surface roughness, polarisation direction and the presence of ultraviolet defect centres
Recommended from our members
Fast response time fiber optical pH and oxygen sensors
While fluorescence-based fiber optic sensors for measuring both pH and oxygen concentration (O2) are well known, current sensors are often limited by their response time and drift, which limits the use of existing fiber optic sensors of this type in wider applications, for example in physiology and other fields. Several new fiber optical sensors have been developed and optimized, with respect to key features such as tip shape and coating layer thickness. In this work, preliminary results on the performance of a suite of pH sensors with fast response times, < 3 second and oxygen sensors (O2) with response times < 0.2 second. The sensors have been calibrated and their performance analyzed using the Henderson–Hasselbalch equation (pH) and classic Lehrer-model (O2)
Recommended from our members
High power 405 nm diode laser fiber-coupled single-mode system with high long-term stability
Fiber-coupled 405 nm diode laser systems are rarely used with fiber output powers higher than 50 mW. A quick degradation of fiber-coupled high power modules with wavelengths in the lower range of the visible spectrum is known for several years. Meanwhile, the typical power of single-mode diode lasers around 400 nm is in the order of 100 to 300 mW, leading to single-mode fiber core power densities in the 1 MW/cm² range. This is three magnitudes of order below the known threshold for optical damage. Our profound investigations on the influence of 405 nm laser light irradiation of single-mode fibers found the growth of periodic surface structures in the form of ripples responsible for the power loss. The ripples are found on the proximal and distal fiber end surfaces, negatively impacting power transmission and beam quality, respectively. Important parameters in the generation of the surface structures are power density, surface roughness and polarization direction. A fiber-coupled high-power 405 nm diode laser system with a high long-term stability will be introduced and described
An Unsplit, Cell-Centered Godunov Method for Ideal MHD
We present a second-order Godunov algorithm for multidimensional, ideal MHD.
Our algorithm is based on the unsplit formulation of Colella (J. Comput. Phys.
vol. 87, 1990), with all of the primary dependent variables centered at the
same location. To properly represent the divergence-free condition of the
magnetic fields, we apply a discrete projection to the intermediate values of
the field at cell faces, and apply a filter to the primary dependent variables
at the end of each time step. We test the method against a suite of linear and
nonlinear tests to ascertain accuracy and stability of the scheme under a
variety of conditions. The test suite includes rotated planar linear waves, MHD
shock tube problems, low-beta flux tubes, and a magnetized rotor problem. For
all of these cases, we observe that the algorithm is second-order accurate for
smooth solutions, converges to the correct weak solution for problems involving
shocks, and exhibits no evidence of instability or loss of accuracy due to the
possible presence of non-solenoidal fields.Comment: 37 Pages, 9 Figures, submitted to Journal of Computational Physic
Large-scale interplanetary magnetic fields: Voyager 1 and 2 observations between 1 AU and 9.5 AU
The large-scale radial and temporal variations of the interplanetary magnetic field strength B observed by Voyagers 1 and 2 are discussed. Two components of the magnetic field strength were considered: (1) an average component, B sub zero, based on solar rotation averages, and (2) a fluctuation component, delta B, expressed by 10- or 24-hour averages of B normalized by the best-fit average field for the corresponding time and distance. Observations of the sector structure, interfaces, and shocks are presented to further describe magnetic field strength
Large-scale variations of the interplanetary magnetic field: Voyager 1 and 2 observations between 1-5 AU
Observations by the Voyager 1 and 2 spacecraft of the interplanetary magnetic field between 1 and 5 AU were used to investigate the large scale structure of the IMF in a period of increasing solar activity. The Voyager spacecraft found notable deviations from the Parker axial model. These deviations are attributed both to temporal variations associated with increasing solar activity, and to the effects of fluctuations of the field in the radial direction. The amplitude of the latter fluctuations were found to be large relative to the magnitude of the radial field component itself beyond approximately 3 AU. Both Voyager 1 and Voyager 2 observed decreases with increasing heliocentric distance in the amplitude of transverse fluctuations in the averaged field strength (B) which are consistent with the presence of predominantly undamped Alfven waves in the solar wind, although and necessarily implying the presence of them. Fluctuations in the strength of B (relative to mean field strength) were found to be small in amplitude, with a RMS which is approximately one third of that for the transverse fluctuations and they are essentially independent of distance from the Sun
Relaxing Cosmological Constraints on Large Extra Dimensions
We reconsider cosmological constraints on extra dimension theories from the
excess production of Kaluza-Klein gravitons. We point out that, if the normalcy
temperature is above 1 GeV, then graviton states produced at this temperature
will decay early enough that they do not affect the present day dark matter
density, or the diffuse gamma ray background. We rederive the relevant
cosmological constraints for this scenario.Comment: 17 pages, latex, revtex4; added a short discussion of other
constraints, reference
Kinetic Scale Density Fluctuations in the Solar Wind
We motivate the importance of studying kinetic scale turbulence for
understanding the macroscopic properties of the heliosphere, such as the
heating of the solar wind. We then discuss the technique by which kinetic scale
density fluctuations can be measured using the spacecraft potential, including
a calculation of the timescale for the spacecraft potential to react to the
density changes. Finally, we compare the shape of the density spectrum at ion
scales to theoretical predictions based on a cascade model for kinetic
turbulence. We conclude that the shape of the spectrum, including the ion scale
flattening, can be captured by the sum of passive density fluctuations at large
scales and kinetic Alfven wave turbulence at small scales
Interplanetary propulsion using inertial fusion
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed
- …