49,272 research outputs found

    Study of gossamer superconductivity and antiferromagnetism in the t-J-U model

    Full text link
    The d-wave superconductivity (dSC) and antiferromagnetism are analytically studied in a renormalized mean field theory for a two dimensional t-J model plus an on-site repulsive Hubbard interaction UU. The purpose of introducing the UU term is to partially impose the no double occupancy constraint by employing the Gutzwiller approximation. The phase diagrams as functions of doping δ\delta and UU are studied. Using the standard value of t/J=3.0t/J=3.0 and in the large UU limit, we show that the antiferromagnetic (AF) order emerges and coexists with the dSC in the underdoped region below the doping δ∼0.1\delta\sim0.1. The dSC order parameter increases from zero as the doping increases and reaches a maximum near the optimal doping δ∼0.15\delta\sim0.15. In the small UU limit, only the dSC order survives while the AF order disappears. As UU increased to a critical value, the AF order shows up and coexists with the dSC in the underdoped regime. At half filing, the system is in the dSC state for small UU and becomes an AF insulator for large UU. Within the present mean field approach, We show that the ground state energy of the coexistent state is always lower than that of the pure dSC state.Comment: 7 pages, 8 figure

    On several families of elliptic curves with arbitrary large Selmer groups

    Full text link
    In this paper, we calculate the ϕ(ϕ^)− \phi (\hat{\phi})-Selmer groups S^{(\phi)} (E / \Q) and S^{(\hat{\varphi})} (E^{\prime} / \Q) of elliptic curves y2=x(x+ϵpD)(x+ϵqD) y^{2} = x (x + \epsilon p D) (x + \epsilon q D) via descent theory (see [S, Chapter X]), in particular, we obtain that the Selmer groups of several families of such elliptic curves can be arbitrary large.Comment: 22 page

    Global behavior of cosmological dynamics with interacting Veneziano ghost

    Full text link
    In this paper, we shall study the dynamical behavior of the universe accelerated by the so called Veneziano ghost dark energy component locally and globally by using the linearization and nullcline method developed in this paper. The energy density is generalized to be proportional to the Hawking temperature defined on the trapping horizon instead of Hubble horizon of the Friedmann-Robertson-Walker (FRW) universe. We also give a prediction of the fate of the universe and present the bifurcation phenomenon of the dynamical system of the universe. It seems that the universe could be dominated by dark energy at present in some region of the parameter space.Comment: 8 pages, 7 figures, accepted for publication in JHE

    Morphological instability, evolution, and scaling in strained epitaxial films: An amplitude equation analysis of the phase field crystal model

    Full text link
    Morphological properties of strained epitaxial films are examined through a mesoscopic approach developed to incorporate both the film crystalline structure and standard continuum theory. Film surface profiles and properties, such as surface energy, liquid-solid miscibility gap and interface thickness, are determined as a function of misfit strains and film elastic modulus. We analyze the stress-driven instability of film surface morphology that leads to the formation of strained islands. We find a universal scaling relationship between the island size and misfit strain which shows a crossover from the well-known continuum elasticity result at the weak strain to a behavior governed by a "perfect" lattice relaxation condition. The strain at which the crossover occurs is shown to be a function of liquid-solid interfacial thickness, and an asymmetry between tensile and compressive strains is observed. The film instability is found to be accompanied by mode coupling of the complex amplitudes of the surface morphological profile, a factor associated with the crystalline nature of the strained film but absent in conventional continuum theory.Comment: 16 pages, 10 figures; to be published in Phys. Rev.

    Viscosity calculated in simulations of strongly-coupled dusty plasmas with gas friction

    Full text link
    A two-dimensional strongly-coupled dusty plasma is modeled using Langevin and frictionless molecular dynamical simulations. The static viscosity η\eta and the wave-number-dependent viscosity η(k)\eta(k) are calculated from the microscopic shear in the random motion of particles. A recently developed method of calculating the wave-number-dependent viscosity η(k)\eta(k) is validated by comparing the results of η(k)\eta(k) from the two simulations. It is also verified that the Green-Kubo relation can still yield an accurate measure of the static viscosity η\eta in the presence of a modest level of friction as in dusty plasma experiments.Comment: 6 pages, 3 figures, Physics of Plasmas invited pape
    • …
    corecore