Morphological properties of strained epitaxial films are examined through a
mesoscopic approach developed to incorporate both the film crystalline
structure and standard continuum theory. Film surface profiles and properties,
such as surface energy, liquid-solid miscibility gap and interface thickness,
are determined as a function of misfit strains and film elastic modulus. We
analyze the stress-driven instability of film surface morphology that leads to
the formation of strained islands. We find a universal scaling relationship
between the island size and misfit strain which shows a crossover from the
well-known continuum elasticity result at the weak strain to a behavior
governed by a "perfect" lattice relaxation condition. The strain at which the
crossover occurs is shown to be a function of liquid-solid interfacial
thickness, and an asymmetry between tensile and compressive strains is
observed. The film instability is found to be accompanied by mode coupling of
the complex amplitudes of the surface morphological profile, a factor
associated with the crystalline nature of the strained film but absent in
conventional continuum theory.Comment: 16 pages, 10 figures; to be published in Phys. Rev.