36 research outputs found

    Clinico-Hematological and cytogenetic spectrum of adult myelodysplastic syndrome: The first retrospective cross-sectional study in Iranian patients

    Get PDF
    Background: Myelodysplastic syndrome (MDS), a heterogeneous group of hematopoietic malignancy, has been shown to present different cytogenetic abnormalities, risk factors, and clinico-hematological features in different populations and geographic areas. Herein, we determined the cytogenetic spectrum and clinico-hematological features of Iranian MDS patients for the first time. Methods: This prospective cross-sectional study was conducted on 103 patients with MDS in Ahvaz, southwest of Iran, from 2014 to 2018. Clinical presentations, complete blood counts (CBC), and bone marrow (BM) biopsy samples were assessed. Perls' staining was used to evaluate BM iron storage. The cytogenetic evaluation was performed using the conventional G banding method on the BM. Results: Patients� median age was 62.3 (ranged from 50�76), and the majority were male (72.8). The most common clinical symptom at the time of admission was fatigue (n = 33) followed by pallor (n = 27). The most common subgroup was MDS-Multi Lineage Dysplasia (MDS-MLD) (n = 38, 36.8), followed by MDS-Single Lineage Dysplasia (MDS-SLD) (n = 28, 18.4). A normal karyotype was observed in 59 patients (57.3), while 44 patients (42.7) had cytogenetic abnormalities. Trisomy 8 (+ 8) was the most common cytogenetic abnormality (n = 14) followed by del 17p (n = 9) and monosomy 7 (� 7) (n = 7). Twelve patients (11.65) were transformed to AML. Conclusion: Our data betokened that among our MDS patients, Trisomy 8 is the predominant cytogenetic abnormality, and MDS-MLD and MDS-SLD are the most common of subtypes. Noteworthy, the male: female ratio was slightly higher in Iran than in previous reports from other parts of the world. Our study is the first report of the clinical, hematological, and cytogenetic spectrum of MDS patients in Iran © 2021, The Author(s)

    Altered Gene Expression in Early Atherosclerosis Is Blocked by Low Level Apolipoprotein E

    Get PDF
    BACKGROUND: Mice deficient in apolipoprotein E (apoE(-/-)) develop atherosclerosis. The possible linkage between expression of adhesion molecules/cofactors and atherosclerosis was probed at the level of mRNA and protein expression. The hypothesis of a linkage between changes of adhesion molecules/cofactors and atherosclerosis was tested further by suppression of aortic lesion formation in apoE(-/-) mice by expression of very low levels of transgenic apolipoprotein E. METHODOLOGY/PRINCIPAL FINDINGS: We show that at 8.5 months of age, the apoE(-/-) mice display elevated expression of mRNA for LFA-1, MAC-1, VCAM-1, ICAM-1, and for CD44, as well as MCP-1, cathepsin B, and COX-2 (but not that for eNOS) in atherosclerotic aortic arches. At earlier age, (10-13 week old) apoE(-/-) mice already display elevated expression of mRNA of CD44, LFA-1, MAC-1, VCAM-1, ICAM-1, cathepsin, and of COX-2 in lesioned aortic arches. Expressing very low levels of transgenic apolipoprotein E suppresses both aortic lesions and the expression of mRNA of LFA-1, VCAM-1, MCP-1, cathepsin B, and of ICAM-1 in ApoE(-/-) mice. We tested at the level of protein, the observations obtained for mRNA expression. CD11a (a component of LFA-1), VCAM-1 and cathepsin B expression was found to be elevated in apoE(-/-) aortas at 8-9 months; low level expression of transgenic apolipoprotein E rectifies these changes. CONCLUSIONS/SIGNIFICANCE: Atherosclerotic lesions in apoE(-/-) mice are detected as early as 4 weeks of age. Expression of low levels of apoE is shown to be both atheroprotective and to suppress these changes in key adhesion and inflammatory molecules observed in early atherosclerotic lesions

    Signaling pathways activated by PACAP in MCF-7 breast cancer cells

    No full text
    PACAP has opposing roles ranging from activation to inhibition of tumor growth and PACAP agonists/antagonists could be used in tumor therapy. In this study, the effect of PACAP stimulation on signaling pathways was investigated in MCF-7 human adenocarcinoma breast cancer cells. Results showed that MCF-7 cells express VPAC1 and VPAC2, but not PAC1, receptors. In addition, PACAP increased the phosphorylation levels of STAT1, Src and Raf within seconds, confirming their involvement in early stages of PACAP signaling whereas maximal phosphorylation of AKT, ERK and p38 was reached 10 to 20 min later. Moreover, selective inhibition of Src or PI3K resulted in a significant decrease in the phosphorylation of ERK and AKT, but not p38, demonstrating that PACAP signaling follows Src/Raf/ERK and PI3K/AKT pathways. On the other hand, selective inhibition of PLC or PKA resulted in a significant decrease in the phosphorylation of p38, but not AKT or ERK, indicating that PACAP signaling also follows the PLC and PKA/cAMP pathways. Furthermore, PACAP induced ROS through H?O? production whereas pretreatment with NAC inhibitor decreased AKT and ERK phosphorylation, but not p38. Selective NOX2 inhibition affected Src/Raf/Erk and PI3K/Akt pathways, without affecting the p38/PLC/PKA pathway whereas other inhibitors (ML171, VAS2870) had no effect on PACAP induced ROS generation. On the other hand, PACAP induced calcium release, which was decreased by pretreatment with PLC inhibitor. Finally, PACAP stimulation promoted apoptosis by increasing Bax and decreasing Bcl2 expression. In conclusion, we demonstrated that PACAP signaling in MCF-7 cells follows the Src/Raf/ERK and PI3K/AKT pathways and is VPAC1 dependent in a ROS dependent manner, whereas it follows PLC and PKA/cAMP pathways and is VPAC2 dependent through p38 MAP kinase activation involving calcium.This work was supported by grants from Lebanese National Council for Scientific Research (KZ, grant number: 7/2016 ) and Lebanese University (KZ, grant number: 22454/4/6081 ; NEZ, grant number: 2016/20737 )

    Repurposing of Acriflavine to target Chronic Myeloid Leukemia treatment

    No full text
    International audienceDrug repurposing has lately received increasing interest in several diseases especially in cancers, due to its advantages in facilitating the development of new therapeutic strategies, by adopting a cost-friendly approach and avoiding the strict Food and Drug Administration (FDA) regulations. Acriflavine (ACF) is an FDA approved molecule that has been extensively studied since 1912 with antiseptic, trypanocidal, anti-viral, anti-bacterial and anti-cancer effects. ACF has been shown to block the growth of solid and hematopoietic tumor cells. Indeed, ACF acts as an inhibitor of various proteins, including DNA-dependent protein kinases C (DNA-PKcs), topoisomerase I and II, hypoxia-inducible factor 1α (HIF-1α), in addition to its recent discovery as an inhibitor of the signal transducer and activator of transcription (STAT). Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the expression of the constitutively active tyrosine kinase BCR-ABL. This protein allows the activation of several signaling pathways known for their role in cell proliferation and survival, such as the JAK/STAT pathway. CML therapy, based on tyrosine kinase inhibitors (TKIs), such as imatinib (IM), is highly effective. However, 15% of patients are refractory to IM, where in some cases, 20-30% of patients become resistant. Thus, we suggest the repurposing of ACF in CML after IM failure or in combination with IM to improve the anti-tumor effects of IM. In this review, we present the different pharmacological properties of ACF along with its anti-leukemic effects in the hope of its repurposing in CML therapy
    corecore