20 research outputs found
Recommended from our members
Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence (CHEERS-AI)
Objectives: Economic evaluations (EEs) are commonly used by decision makers to understand the value of health interventions. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS 2022) provide reporting guidelines for EEs. Healthcare systems will increasingly see new interventions that use artificial intelligence (AI) to perform their function. We developed Consolidated Health Economic Evaluation Reporting Standards for Interventions that use AI (CHEERS-AI) to ensure EEs of AI-based health interventions are reported in a transparent and reproducible manner.
Methods: Potential CHEERS-AI reporting items were informed by 2 published systematic literature reviews of EEs and a contemporary update. A Delphi study was conducted using 3 survey rounds to elicit multidisciplinary expert views on 26 potential items, through a 9-point Likert rating scale and qualitative comments. An online consensus meeting was held to finalize outstanding reporting items. A digital health patient group reviewed the final checklist from a patient perspective.
Results: A total of 58 participants responded to survey round 1, 42, and 31 of whom responded to rounds 2 and 3, respectively. Nine participants joined the consensus meeting. Ultimately, 38 reporting items were included in CHEERS-AI. They comprised the 28 original CHEERS 2022 items, plus 10 new AI-specific reporting items. Additionally, 8 of the original CHEERS 2022 items were elaborated on to ensure AI-specific nuance is reported.
Conclusions: CHEERS-AI should be used when reporting an EE of an intervention that uses AI to perform its function. CHEERS-AI will help decision makers and reviewers to understand important AI-specific details of an intervention, and any implications for the EE methods used and cost-effectiveness conclusions
Barriers to use artificial intelligence methodologies in health technology assessment in central and East European countries
Abstract
The aim of this paper is to identify the barriers that are specifically relevant to the use of Artificial Intelligence (AI)-based evidence in Central and Eastern European (CEE) Health Technology Assessment (HTA) systems. The study relied on two main parallel sources to identify barriers to use AI methodologies in HTA in CEE, including a scoping literature review and iterative focus group meetings with HTx team members. Most of the other selected articles discussed AI from a clinical perspective (n = 25), and the rest are from regulatory perspective (n = 13), and transfer of knowledge point of view (n = 3). Clinical areas studied are quite diverse—from pediatric, diabetes, diagnostic radiology, gynecology, oncology, surgery, psychiatry, cardiology, infection diseases, and oncology. Out of all 38 articles, 25 (66%) describe the AI method and the rest are more focused on the utilization barriers of different health care services and programs. The potential barriers could be classified as data related, methodological, technological, regulatory and policy related, and human factor related. Some of the barriers are quite similar, especially concerning the technologies. Studies focusing on the AI usage for HTA decision making are scarce. AI and augmented decision making tools are a novel science, and we are in the process of adapting it to existing needs. HTA as a process requires multiple steps, multiple evaluations which rely on heterogenous data. Therefore, the observed range of barriers come as a no surprise, and experts in the field need to give their opinion on the most important barriers in order to develop recommendations to overcome them and to disseminate the practical application of these tools