927 research outputs found
Recommended from our members
The critical events for motor-sensory temporal recalibration
Determining if we, or another agent, were responsible for a sensory event can require an accurate sense of timing. Our sense of appropriate timing relationships must, however, be malleable as there is a variable delay between the physical timing of an event and when sensory signals concerning that event are encoded in the brain. One dramatic demonstration of such malleability involves having people repeatedly press a button thereby causing a beep. If a delay is inserted between button presses and beeps, when it is subsequently taken away beeps can seem to precede the button presses that caused them. For this to occur it is important that people feel they were responsible for instigating the beeps. In terms of their timing, as yet it is not clear what combination of events is important for motor-sensory temporal recalibration. Here, by introducing ballistic reaches of short or longer extent before a button press, we varied the delay between the intention to act and the sensory consequence of that action. This manipulation failed to modulate recalibration magnitude. By contrast, introducing a similarly lengthened delay between button presses and consequent beeps eliminated recalibration. Thus it would seem that the critical timing relationship for motor-sensory temporal recalibration is between tactile signals relating to the completion of an action and the subsequent auditory percept
Evolution of concentration in the United Kingdom cement industry: Structure, conduct, and performance. Evolution of concentration and competition series No. 20, November 1978
Recommended from our members
Neural correlates of subjective timing precision and confidence
Humans perceptual judgments are imprecise, as repeated exposures to the same physical stimulation (e.g. audio-visual inputs separated by a constant temporal offset) can result in different decisions. Moreover, there can be marked individual differences – precise judges will repeatedly make the same decision about a given input, whereas imprecise judges will make different decisions. The causes are unclear. We examined this using audio-visual (AV) timing and confidence judgments, in conjunction with electroencephalography (EEG) and multivariate pattern classification analyses. One plausible cause of differences in timing precision is that it scales with variance in the dynamics of evoked brain activity. Another possibility is that equally reliable patterns of brain activity are evoked, but there are systematic differences that scale with precision. Trial-by-trial decoding of input timings from brain activity suggested precision differences may not result from variable dynamics. Instead, precision was associated with evoked responses that were exaggerated (more different from baseline) ~300 ms after initial physical stimulations. We suggest excitatory and inhibitory interactions within a winner-take-all neural code for AV timing might exaggerate responses, such that evoked response magnitudes post-stimulation scale with encoding success
Recommended from our members
Increased motor cortex excitability for concealed visual information
Deceptive behaviour involves complex neural processes involving the primary motor cortex. The dynamics of this motor cortex excitability prior to lying are still not well understood. We sought to examine whether corticospinal excitability can be used to suggest the presence of deliberately concealed information in a modified version of the Guilty Knowledge Test (GKT). Participants pressed keys to either truthfully or deceitfully indicate their familiarity with a series of faces. Motor-evoked-potentials (MEPs) were recorded during response preparation to measure muscle-specific neural excitability. We hypothesised that MEPs would increase during the deceptive condition not only in the lie-telling finger but also in the suppressed truth-telling finger. We report a group-level increase in overall corticospinal excitability 300 ms following stimulus onset during the deceptive condition, without specific activation of the neural representation of the truth-telling finger. We discuss cognitive processes, particularly response conflict and/or automated responses to familiar stimuli, which may drive the observed non-specific increase of motor excitability in deception
Recommended from our members
Spatial grouping resolves ambiguity to drive temporal recalibration.
Cross-modal temporal recalibration describes a shift in the point of subjective simultaneity (PSS) between 2 events following repeated exposure to asynchronous cross-modal inputs-the adaptors. Previous research suggested that audiovisual recalibration is insensitive to the spatial relationship between the adaptors. Here we show that audiovisual recalibration can be driven by cross-modal spatial grouping. Twelve participants adapted to alternating trains of lights and tones. Spatial position was manipulated, with alternating sequences of a light then a tone, or a tone then a light, presented on either side of fixation (e.g., left tone-left light-right tone-right light, etc.). As the events were evenly spaced in time, in the absence of spatial-based grouping it would be unclear if tones were leading or lagging lights. However, any grouping of spatially colocalized cross-modal events would result in an unambiguous sense of temporal order. We found that adapting to these stimuli caused the PSS between subsequent lights and tones to shift toward the temporal relationship implied by spatial-based grouping. These data therefore show that temporal recalibration is facilitated by spatial grouping. (PsycINFO Database Record (c) 2011 APA, all rights reserved)
Recommended from our members
Optimal integration of auditory and vibrotactile information for judgments of temporal order
Recent research that assessed spatial judgments about multisensory stimuli suggests that humans integrate multisensory inputs in a statistically optimal manner by weighting each input by its normalized reciprocal variance. Is integration similarly optimal When humans judge the temporal properties of bimodal stimuli? Twenty-four participants performed temporal order judgments (TOJs,) about 2 spatially separated stimuli. Stimuli were auditory, vibrotactile, or both. The temporal profiles of vibrotactile stimuli were manipulated to produce 3 levels of precision for TOJs. In bimodal conditions, the asynchrony between the 2 unimodal stimuli that comprised it bimodal Stimulus was manipulated to determine the weight given to touch. Bimodal performance on 2 measures-judgment uncertainty and tactile weight-was predicted With unimodal data. A model relying exclusively on audition wits rejected on the basis of both measures. A second model that selected the best input on each trial did not predict the reduced judgment uncertainty observed in bimodal trials. Only the optimal Maximum-likelihood-estimation model predicted both judgment uncertainties and weights the model's validity is extended to TOJs. Alternatives for modeling the process of event sequencing based on integrated multisensory inputs are discussed
Recommended from our members
Vibrotactile-auditory interactions are post-perceptual
Vibrotactile stimuli can elicit compelling auditory sensations, even when sound energy levels are minimal and undetectable. It has previously been shown that subjects judge auditory tones embedded in white noise to be louder when they are accompanied by a vibrotactile stimulus of the same frequency. A first experiment replicated this result at four different levels of auditory stimulation (no tone, tone at detection threshold, tone at 5 dB above threshold, and tone at 10 dB above threshold). The presence of a vibrotactile stimulus induced an increase in the perceived loudness of auditory tones at three of the four values in this range. In two further experiments, a 2-interval forced-choice procedure was used to assess the nature of this cross-modal interaction. Subjects were biased when vibrotaction was applied in one interval, but applying vibrotaction in both intervals produced performance comparable to conditions without vibrotactile stimuli. This demonstrates that vibrotaction is sometimes ignored when judging the presence of an auditory tone. Hence the interaction between vibrotaction and audition does not appear to occur at an early perceptual level
Recommended from our members
Financial interests of patient organisations contributing to technology appraisal at England's National Institute for Health and Care Excellence (NICE): a policy review
Objectives: To investigate the prevalence of financial interests among patient organisations contributing to health technology assessment at the National Institute for Health and Care Excellence (NICE) in England, and the extent to which current disclosure policy ensures decision-making committees are aware of these interests.
Design: Policy review using annual accounts, reports and websites of patient organisations, a database of payments declared by pharmaceutical manufacturers (Disclosure UK), other manufacturer declarations, responses from patient organisations, and declarations of interests by nominated representatives of patient organisations.
Setting: Appraisals of medicines and treatments for use in the English and Welsh National Health Service.
Participants: 53 patient organisations contributing to 41 NICE technology appraisals published in 2015 and 2016, with 117 separate occasions that a patient organisation contributed to the appraisal of a technology.
Main outcome measures: (i) Prevalence of specific interests, i.e. funding from manufacturer(s) of a technology under appraisal or competitor products; (ii) Proportion of specific interests of which NICE decision-making committees were aware; (iii) Proportion of specific interests for which disclosure was not required by current NICE policy.
Results: 38/53 (71.7%) patient organisations had accepted funding from the manufacturer(s) of a technology or a competitor product in the same or previous year that they had contributed to the appraisal of that technology. Specific interests were 46 present on 92 out of 117 (78.6%) occasions that patient organisations contributed to appraisals in 2015 and 2016. NICE decision-making committees were aware of less than a third of specific interests (36/115, 31.3%). For over half of the specific interests of which committees were unaware (42/79, 53.2%), disclosure by patient organisations was not required by current NICE policy.
Conclusions: Specific interests are highly prevalent among patient organisations contributing to health technology assessment. NICE is reviewing its disclosure policy to ensure that decision-making committees are aware of all relevant interests
Recommended from our members
A model-based comparison of three theories of audiovisual temporal recalibration
Observers change their audio-visual timing judgements after exposure to asynchronous audiovisual signals. The mechanism underlying this temporal recalibration is currently debated. Three broad explanations have been suggested. According to the first, the time it takes for sensory signals to propagate through the brain has changed. The second explanation suggests that decisional criteria used to interpret signal timing have changed, but not time perception itself. A final possibility is that a population of neurones collectively encode relative times, and that exposure to a repeated timing relationship alters the balance of responses in this population. Here, we simplified each of these explanations to its core features in order to produce three corresponding six-parameter models, which generate contrasting patterns of predictions about how simultaneity judgements should vary across four adaptation conditions: No adaptation, synchronous adaptation, and auditory leading/lagging adaptation. We tested model predictions by fitting data from all four conditions simultaneously, in order to assess which model/explanation best described the complete pattern of results. The latency-shift and criterion-change models were better able to explain results for our sample as a whole. The population-code model did, however, account for improved performance following adaptation to a synchronous adapter, and best described the results of a subset of observers who reported least instances of synchrony
- …
