536 research outputs found

    A high dynamic-range instrument for SPICA for coronagraphic observation of exoplanets and monitoring of transiting exoplanets

    Full text link
    This paper, first, presents introductory reviews of the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission and the SPICA Coronagraph Instrument (SCI). SPICA will realize a 3m class telescope cooled to 6K in orbit. The launch of SPICA is planned to take place in FY2018. The SPICA mission provides us with a unique opportunity to make high dynamic-range observations because of its large telescope aperture, high stability, and the capability for making infrared observations from deep space. The SCI is a high dynamic-range instrument proposed for SPICA. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in the infrared region, while the monitoring of transiting planets is another important target owing to the non-coronagraphic mode of the SCI. Then, recent technical progress and ideas in conceptual studies are presented, which can potentially enhance the performance of the instrument: the designs of an integral 1-dimensional binary-shaped pupil mask coronagraph with general darkness constraints, a concentric ring mask considering the obscured pupil for surveying a wide field, and a spectral disperser for simultaneous wide wavelength coverage, and the first results of tests of the toughness of MEMS deformable mirrors for the rocket launch are introduced, together with a description of a passive wavefront correction mirror using no actuator.Comment: 15 pages, 10 figures, 2 table

    The Infrared Camera (IRC) for AKARI - Design and Imaging Performance

    Full text link
    The Infrared Camera (IRC) is one of two focal-plane instruments on the AKARI satellite. It is designed for wide-field deep imaging and low-resolution spectroscopy in the near- to mid-infrared (1.8--26.5um) in the pointed observation mode of AKARI. IRC is also operated in the survey mode to make an all-sky survey at 9 and 18um. It comprises three channels. The NIR channel (1.8--5.5um) employs a 512 x 412 InSb array, whereas both the MIR-S (4.6--13.4um) and MIR-L (12.6--26.5um) channels use 256 x 256 Si:As impurity band conduction arrays. Each of the three channels has a field-of-view of about 10' x 10' and are operated simultaneously. The NIR and MIR-S share the same field-of-view by virtue of a beam splitter. The MIR-L observes the sky about $25' away from the NIR/MIR-S field-of-view. IRC gives us deep insights into the formation and evolution of galaxies, the evolution of planetary disks, the process of star-formation, the properties of interstellar matter under various physical conditions, and the nature and evolution of solar system objects. The in-flight performance of IRC has been confirmed to be in agreement with the pre-flight expectation. This paper summarizes the design and the in-flight operation and imaging performance of IRC.Comment: Publications of the Astronomical Society of Japan, in pres

    A thermodynamic unification of jamming

    Full text link
    Fragile materials ranging from sand to fire-retardant to toothpaste are able to exhibit both solid and fluid-like properties across the jamming transition. Unlike ordinary fusion, systems of grains, foams and colloids jam and cease to flow under conditions that still remain unknown. Here we quantify jamming via a thermodynamic approach by accounting for the structural ageing and the shear-induced compressibility of dry sand. Specifically, the jamming threshold is defined using a non-thermal temperature that measures the 'fluffiness' of a granular mixture. The thermodynamic model, casted in terms of pressure, temperature and free-volume, also successfully predicts the entropic data of five molecular glasses. Notably, the predicted configurational entropy avoids the Kauzmann paradox entirely. Without any free parameters, the proposed equation-of-state also governs the mechanism of shear-banding and the associated features of shear-softening and thickness-invariance.Comment: 16 pgs double spaced. 4 figure

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    Construction of the free energy landscape by the density functional theory

    Full text link
    On the basis of the density functional theory, we give a clear definition of the free energy landscape. To show the usefulness of the definition, we construct the free energy landscape for rearrangement of atoms in an FCC crystal of hard spheres. In this description, the cooperatively rearranging region (CRR) is clealy related to the hard spheres involved in the saddle between two adjacent basins. A new concept of the simultaneously rearranging region (SRR) emerges naturally as spheres defined by the difference between two adjacent basins. We show that the SRR and the CRR can be determined explicitly from the free energylandscape.Comment: 11 pages, 3 figures, submitted to J. Chem. Phy

    Magnetic properties of monodispersed Co/CoO clusters

    Get PDF
    Monodispersed Co/CoO cluster assemblies with the mean cluster sizes of 6 and 13 nm have been prepared by a plasma-gas condensation type cluster beam deposition apparatus. We measured the effects of the oxygen gas flow rate during deposition, temperature, and cluster size on the coercivity and hysteresis loop shift induced by field cooling. The large exchange bias field (10.2 kOe) and coercivity (5 kOe) were observed at 5 K for the monodispersed Co/CoO cluster assembly with d=6 nm. The correlations between unidirectional anisotropy and uniaxial anisotropy, training effect and magnetic relaxation can be interpreted by the hypothesis of a spin disorder in the interfacial layer between the antiferromagnetic CoO shell and the ferromagnetic Co core

    Characteristic tunnel-type conductivity and magnetoresistance in a CoO-coated monodispersive Co cluster assembly

    Get PDF
    We have studied electrical conductivity, sigma, and magnetoresistance in a CoO-coated monodispersive Co cluster assembly fabricated by a plasma-gas-aggregation-type cluster beam deposition technique. The temperature dependence of sigma is described in the form of log sigma vs 1/T for 7<T <80 K. The magnetoresistance ratio (rho(0)=rho(3T))/rho(0) increases sharply with decreasing temperature below 25 K: from 3.5% at 25 K to 20.5% at 4.2 K. This marked increase (by a factor of 6) is much larger than those observed for conventional metal-insulator granular systems. These results are ascribed to the Coulomb blockade effect in the monodispersed cluster assemblies. (C) 1999 American Institute of Physics. [S0003-6951(99)01901-4]
    corecore