258,829 research outputs found
Free vibration of hexagonal panels supported at discrete points
An analytical study to determine the structural dynamic behavior of a hexagonal panel with discrete simple supports is presented. These panels are representative of the facets of a precision reflector surface. The effects of both support point location and panel curvature on the lowest natural frequency of the panel are quantified and discussed
X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables
Compton scattering within the accretion column of magnetic cataclysmic
variables (mCVs) can induce a net polarization in the X-ray emission. We
investigate this process using Monte Carlo simulations and find that
significant polarization can arise as a result of the stratified flow structure
in the shock-ionized column. We find that the degree of linear polarization can
reach levels up to ~8% for systems with high accretion rates and low
white-dwarf masses, when viewed at large inclination angles with respect to the
accretion column axis. These levels are substantially higher than previously
predicted estimates using an accretion column model with uniform density and
temperature. We also find that for systems with a relatively low-mass white
dwarf accreting at a high accretion rate, the polarization properties may be
insensitive to the magnetic field, since most of the scattering occurs at the
base of the accretion column where the density structure is determined mainly
by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA
Pipelined digital SAR azimuth correlator using hybrid FFT-transversal filter
A synthetic aperture radar system (SAR) having a range correlator is provided with a hybrid azimuth correlator which utilizes a block-pipe-lined fast Fourier transform (FFT). The correlator has a predetermined FFT transform size with delay elements for delaying SAR range correlated data so as to embed in the Fourier transform operation a corner-turning function as the range correlated SAR data is converted from the time domain to a frequency domain. The azimuth correlator is comprised of a transversal filter to receive the SAR data in the frequency domain, a generator for range migration compensation and azimuth reference functions, and an azimuth reference multiplier for correlation of the SAR data. Following the transversal filter is a block-pipelined inverse FFT used to restore azimuth correlated data in the frequency domain to the time domain for imaging
Characterization of the bending stiffness of large space structure joints
A technique for estimating the bending stiffness of large space structure joints is developed and demonstrated for an erectable joint concept. Experimental load-deflection data from a three-point bending test was used as input to solve a closed-form expression for the joint bending stiffness which was derived from linear beam theory. Potential error sources in both the experimental and analytical procedures are identified and discussed. The bending stiffness of a mechanically preloaded erectable joint is studied at three applied moments and seven joint orientations. Using this technique, the joint bending stiffness was bounded between 6 and 17 percent of the bending stiffness of the graphite/epoxy strut member
Topological Charge of Lattice Abelian Gauge Theory
Configuration space of abelian gauge theory on a periodic lattice becomes
topologically disconnected by excising exceptional gauge field configurations.
It is possible to define a U(1) bundle from the nonexceptional link variables
by a smooth interpolation of the transition functions. The lattice analogue of
Chern character obtained by a cohomological technique based on the
noncommutative differential calculus is shown to give a topological charge
related to the topological winding number of the U(1) bundle.Comment: 20 pages, latex, nofigur
Systematic review and quality analysis of emerging diagnostic measures for calcium pyrophosphate crystal deposition disease.
ObjectivesCalcium pyrophosphate crystal deposition disease (CPPD) is common, yet prevalence and overall clinical impact remain unclear. Sensitivity and specificity of CPPD reference standards (conventional crystal analysis (CCA) and radiography (CR)) were meta-analysed by EULAR (published 2011). Since then, new diagnostic modalities are emerging. Hence, we updated 2009-2016 literature findings by systematic review and evidence grading, and assessed unmet needs.MethodsWe performed systematic search of full papers (PubMed, Scopus/EMBASE, Cochrane 2009-2016 databases). Search terms included CPPD, chondrocalcinosis, pseudogout, ultrasound, MRI, dual energy CT (DECT). Paper selection, data abstraction, EULAR evidence level, and Quality Assessment of Diagnostic Accuracy Studies (QUADAS)-2 bias and applicability grading were performed independently by 3 authors.ResultsWe included 26 of 111 eligible papers, which showed emergence in CPPD diagnosis of ultrasound (U/S), and to lesser degree, DECT and Raman spectroscopy. U/S detected CPPD crystals in peripheral joints with sensitivity >80%, superior to CR. However, most study designs, though analytical, yielded low EULAR evidence level. DECT was marginally explored for CPPD, compared with 35 published DECT studies in gout. QUADAS-2 grading indicated strong applicability of U/S, DECT and Raman spectroscopy, but high study bias risk (in ∼30% of papers) due to non-controlled designs, and non-randomised subject selection.ConclusionsThough CCA and CR remain reference standards for CPPD diagnosis, U/S, DECT and Raman spectroscopy are emerging U/S sensitivity appears to be superior to CR. We identified major unmet needs, including for randomised, blinded, controlled studies of CPPD diagnostic performance and rigorous analyses of 4 T MRI and other emerging modalities
White dwarf masses in magnetic cataclysmic variables: Multi-temperature fits to Ginga data
One method of obtaining the mass of the white dwarf in magnetic cataclysmic variables (mCVs) is through their hard X-ray spectra. However, previous mass estimates using this method give lower limits because the temperature of the plasma in the post-shock region (where the hard X-rays are emitted) is lower than the temperature of the shock itself. In AM Her systems, the additional cooling of the post-shock plasma by cyclotron emission will further lower the derived mass. Here we present estimates of the masses of the white dwarf in 13 mCVs derived using Ginga data and a model in which X-rays are emitted from a multi-temperature emission region with the appropriate temperature and density profile. We include in the model reflection from the surface of the white dwarf and a partially ionized absorber. We are able to achieve good fits to the data. We compare the derived masses with previous estimates and the masses for larger samples of isolated white dwarfs and those in CVs
Tunneling-induced restoration of classical degeneracy in quantum kagome ice
Quantum effect is expected to dictate the behavior of physical systems at low temperature. For quantum magnets with geometrical frustration, quantum fluctuation usually lifts the macroscopic classical degeneracy, and exotic quantum states emerge. However, how different types of quantum processes entangle wave functions in a constrained Hilbert space is not well understood. Here, we study the topological entanglement entropy and the thermal entropy of a quantum ice model on a geometrically frustrated kagome lattice. We find that the system does not show a Z(2) topological order down to extremely low temperature, yet continues to behave like a classical kagome ice with finite residual entropy. Our theoretical analysis indicates an intricate competition of off-diagonal and diagonal quantum processes leading to the quasidegeneracy of states and effectively, the classical degeneracy is restored
- …
