253 research outputs found

    Genetic Variants of Wnt Transcription Factor TCF-4 (TCF7L2) Putative Promoter Region Are Associated with Small Intestinal Crohn's Disease

    Get PDF
    Reduced expression of Paneth cell antimicrobial α-defensins, human defensin (HD)-5 and -6, characterizes Crohn's disease (CD) of the ileum. TCF-4 (also named TCF7L2), a Wnt signalling pathway transcription factor, orchestrates Paneth cell differentiation, directly regulates the expression of HD-5 and -6, and was previously associated with the decrease of these antimicrobial peptides in a subset of ileal CD. To investigate a potential genetic association of TCF-4 with ileal CD, we sequenced 2.1 kb of the 5â€Č flanking region of TCF-4 in a small group of ileal CD patients and controls (n = 10 each). We identified eight single nucleotide polymorphisms (SNPs), of which three (rs3814570, rs10885394, rs10885395) were in linkage disequilibrium and found more frequently in patients; one (rs3814570) was thereby located in a predicted regulatory region. We carried out high-throughput analysis of this SNP in three cohorts of inflammatory bowel disease (IBD) patients and controls. Overall 1399 healthy individuals, 785 ulcerative colitis (UC) patients, 225 CD patients with colonic disease only and 784 CD patients with ileal involvement were used to determine frequency distributions. We found an association of rs3814570 with ileal CD but neither with colonic CD or UC, in a combined analysis (allele positivity: OR 1.27, 95% CI 1.07 to 1.52, p = 0.00737), which was the strongest in ileal CD patients with stricturing behaviour (allele frequency: OR 1.32, 95% CI 1.08 to1.62, p = 0.00686) or an additional involvement of the upper GIT (allele frequency: OR 1.38, 95% CI 1.03 to1.84, p = 0.02882). The newly identified genetic association of TCF-4 with ileal CD provides evidence that the decrease in Paneth cell α-defensins is a primary factor in disease pathogenesis

    Differential Cathelicidin Expression in Duodenal and Gastric Biopsies from Tanzanian and German Patients

    Get PDF
    Epithelial surfaces such as the gastrointestinal mucosa depend on expression of antimicrobial peptides like cathelicidin for immune defence against pathogens. The mechanisms behind mucosal cathelicidin regulation are incompletely understood. Cathelicidin expression was analysed in duodenal, antral and corpus/fundic mucosal biopsies from African and German patients. Additionally, cathelicidin expression was correlated with Helicobacter pylori (HP) infection and the inflammatory status of the mucosa. High cathelicidin transcript abundance was detected in duodenal biopsies from African subjects. On the contrary, cathelicidin mRNA expression was either undetectable or very low in tissue specimens from German patients. Also, in the antrum and corpus/fundus regions of the stomach significantly higher cathelicidin transcript levels were measured in Tanzanian compared to German patients. In gastric biopsies from African patients cathelicidin expression was increased in HP positive compared to HP negative subjects. Additionally, the inflammatory status measured by IL-8 expression correlated well with the HP infection status. A higher duodenal and gastric cathelicidin expression in African (compared with European) individuals may be due to upregulation by antigenic stimulation and may confer a higher resistance against enteric infections

    Expression of Human Beta-Defensins in Children with Chronic Inflammatory Bowel Disease

    Get PDF
    Background: Human beta-defensins (hBDs) are antimicrobial peptides known to play a major role in intestinal innate host defence. Altered mucosal expression of hBDs has been suggested to be implicated in chronic inflammatory bowel disease pathogenesis. However, little is known about expression of these peptides in children. Methods: Intestinal biopsies were obtained from the duodenum (n = 88), terminal ileum (n = 90) and ascending colon (n = 105) of children with Crohn’s disease (n = 26), ulcerative colitis (n = 11) and healthy controls (n = 16). Quantitative realtime (RT) PCR was performed and absolute mRNA copy numbers analyzed for hBD1-3 as well as inflammatory cytokines IL-8 and TNF-alpha. Results: Significant induction of hBD2 and hBD3 was observed in the inflamed terminal ileum and ascending colon of IBD children. In the ascending colon induction of hBD2 was found to be significantly lower in children with Crohn’s disease compared to ulcerative colitis. A strong correlation was found between inducible defensins hBD2 and 3 and the inflammatory cytokines IL-8 and TNF-alpha, both in the terminal ileum and ascending colon. Conclusion: Our study demonstrates distinct changes in hBD expression throughout the intestinal tract of children with IBD

    Mouse Background Strain Profoundly Influences Paneth Cell Function and Intestinal Microbial Composition

    Get PDF
    Increasing evidence supports the central role of Paneth cells in maintaining intestinal host-microbial homeostasis. However, the direct impact of host genotype on Paneth cell function remains unclear. Here, we characterize key differences in Paneth cell function and intestinal microbial composition in two widely utilized, genetically distinct mouse strains (C57BL/6 and 129/SvEv). In doing so, we demonstrate critical influences of host genotype on Paneth cell activity and the enteric microbiota.Paneth cell numbers were determined by flow cytometry. Antimicrobial peptide (AMP) expression was evaluated using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR), acid urea-polyacrylamide gel electrophoresis, and mass spectrometry. Effects of mouse background on microbial composition were assessed by reciprocal colonization of germ-free mice from both background strains, followed by compositional analysis of resultant gut bacterial communities using terminal restriction fragment length polymorphism analysis and 16 S qPCR. Our results revealed that 129/SvEv mice possessed fewer Paneth cells and a divergent AMP profile relative to C57BL/6 counterparts. Novel 129/SvEv å-defensin peptides were identified, including Defa2/18v, Defa11, Defa16, and Defa18. Host genotype profoundly affected the global profile of the intestinal microbiota, while both source and host factors were found to influence specific bacterial groups. Interestingly, ileal α-defensins from 129/SvEv mice displayed attenuated antimicrobial activity against pro-inflammatory E. coli strains, a bacterial species found to be expanded in these animals.This work establishes the important impact of host genotype on Paneth cell function and the composition of the intestinal microbiota. It further identifies specific AMP and microbial alterations in two commonly used inbred mouse strains that have varying susceptibilities to a variety of disorders, ranging from obesity to intestinal inflammation. This will be critical for future studies utilizing these murine backgrounds to study the effects of Paneth cells and the intestinal microbiota on host health and disease

    Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to <it>H. pylori</it>-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the <it>H. pylori</it>-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both <it>ex vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p>The expression of Progranulin was studied in biopsies of <it>H. pylori</it>-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR.</p> <p>Results</p> <p><it>H. pylori</it>-infected subjects had about 2-fold increased antral Progranulin expression compared to <it>H. pylori</it>-negative and -eradicated subjects (P < 0.05). Overall, no correlations between mucosal Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to <it>H. pylori </it>infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The <it>H. pylori</it>-induced upregulation of Progranulin was verified in AGS cells infected by <it>H. pylori</it>. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by <it>H. pylori</it>.</p> <p>Conclusions</p> <p>Taken together, Progranulin was identified as novel molecule that is upregulated in context to <it>H. pylori </it>infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in <it>H. pylori</it>-mediated gastritis.</p

    RNase 7 Contributes to the Cutaneous Defense against Enterococcus faecium

    Get PDF
    Background: Human skin is able to mount a fast response against invading microorganisms by the release of antimicrobial proteins such as the ribonuclease RNase 7. Because RNase 7 exhibits high activity against Enterococcus faecium the aim of this study was to further explore the role of RNase 7 in the cutaneous innate defense system against E. faecium. Methodology/Principal Findings: Absolute quantification using real-time PCR and ELISA revealed that primary keratinocytes expressed high levels of RNase 7. Immunohistochemistry showed RNase 7 expression in all epidermal layers of the skin with an intensification in the upper more differentiated layers. Furthermore, RNase 7 was secreted by keratinocytes in vitro and in vivo in a site-dependent way. RNase 7 was still active against E. faecium at low pH (5.5) or high NaCl (150 mM) concentration and the bactericidal activity of RNase 7 against E. faecium required no ribonuclease activity as shown by recombinant RNase 7 lacking enzymatic activity. To further explore the role of RNase 7 in cutaneous defense against E. faecium, we investigated whether RNase 7 contributes to the E. faecium killing activity of skin extracts derived from stratum corneum. Treatment of the skin extract with an RNase 7 specific antibody, which neutralizes the antimicrobial activity of RNase 7, diminished its E. faecium killing activity. Conclusions/Significance: Our data indicate that RNase 7 contributes to the E. faecium-killing activity of skin extracts an

    Paneth cells as a site of origin for intestinal inflammation.

    Get PDF
    The recognition of autophagy related 16-like 1 (ATG16L1) as a genetic risk factor has exposed the critical role of autophagy in Crohn's disease. Homozygosity for the highly prevalent ATG16L1 risk allele, or murine hypomorphic (HM) activity, causes Paneth cell dysfunction. As Atg16l1(HM) mice do not develop spontaneous intestinal inflammation, the mechanism(s) by which ATG16L1 contributes to disease remains obscure. Deletion of the unfolded protein response (UPR) transcription factor X-box binding protein-1 (Xbp1) in intestinal epithelial cells, the human orthologue of which harbours rare inflammatory bowel disease risk variants, results in endoplasmic reticulum (ER) stress, Paneth cell impairment and spontaneous enteritis. Unresolved ER stress is a common feature of inflammatory bowel disease epithelium, and several genetic risk factors of Crohn's disease affect Paneth cells. Here we show that impairment in either UPR (Xbp1(ΔIEC)) or autophagy function (Atg16l1(ΔIEC) or Atg7(ΔIEC)) in intestinal epithelial cells results in each other's compensatory engagement, and severe spontaneous Crohn's-disease-like transmural ileitis if both mechanisms are compromised. Xbp1(ΔIEC) mice show autophagosome formation in hypomorphic Paneth cells, which is linked to ER stress via protein kinase RNA-like endoplasmic reticulum kinase (PERK), elongation initiation factor 2α (eIF2α) and activating transcription factor 4 (ATF4). Ileitis is dependent on commensal microbiota and derives from increased intestinal epithelial cell death, inositol requiring enzyme 1α (IRE1α)-regulated NF-ÎșB activation and tumour-necrosis factor signalling, which are synergistically increased when autophagy is deficient. ATG16L1 restrains IRE1α activity, and augmentation of autophagy in intestinal epithelial cells ameliorates ER stress-induced intestinal inflammation and eases NF-ÎșB overactivation and intestinal epithelial cell death. ER stress, autophagy induction and spontaneous ileitis emerge from Paneth-cell-specific deletion of Xbp1. Genetically and environmentally controlled UPR function within Paneth cells may therefore set the threshold for the development of intestinal inflammation upon hypomorphic ATG16L1 function and implicate ileal Crohn's disease as a specific disorder of Paneth cells

    Epithelial NEMO links innate immunity to chronic intestinal inflammation

    Full text link
    Deregulation of intestinal immune responses seems to have a principal function in the pathogenesis of inflammatory bowel disease(1-4). The gut epithelium is critically involved in the maintenance of intestinal immune homeostasis-acting as a physical barrier separating luminal bacteria and immune cells, and also expressing antimicrobial peptides(3,5,6). However, the molecular mechanisms that control this function of gut epithelial cells are poorly understood. Here we show that the transcription factor NF kappa B, a master regulator of pro-inflammatory responses(7,8), functions in gut epithelial cells to control epithelial integrity and the interaction between the mucosal immune system and gut microflora. Intestinal epithelial-cell-specific inhibition of NF-kappa B through conditional ablation of NEMO ( also called I kappa B kinase-gamma ( IKK gamma)) or both IKK1 ( IKK alpha) and IKK2 ( IKK beta)-IKK subunits essential for NF-kappa B activation(7-9)-spontaneously caused severe chronic intestinal inflammation in mice. NF-kappa B deficiency led to apoptosis of colonic epithelial cells, impaired expression of antimicrobial peptides and translocation of bacteria into the mucosa. Concurrently, this epithelial defect triggered a chronic inflammatory response in the colon, initially dominated by innate immune cells but later also involving T lymphocytes. Deficiency of the gene encoding the adaptor protein MyD88 prevented the development of intestinal inflammation, demonstrating that Toll-like receptor activation by intestinal bacteria is essential for disease pathogenesis in this mouse model. Furthermore, NEMO deficiency sensitized epithelial cells to tumour-necrosis factor ( TNF)-induced apoptosis, whereas TNF receptor-1 inactivation inhibited intestinal inflammation, demonstrating that TNF receptor-1 signalling is crucial for disease induction. These findings demonstrate that a primary NF-kappa B signalling defect in intestinal epithelial cells disrupts immune homeostasis in the gastrointestinal tract, causing an inflammatory-bowel-disease-like phenotype. Our results identify NF-kappa B signalling in the gut epithelium as a critical regulator of epithelial integrity and intestinal immune homeostasis, and have important implications for understanding the mechanisms controlling the pathogenesis of human inflammatory bowel disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62858/1/nature05698.pd

    Consensus recommendations for patient-centered therapy in mild-to-moderate ulcerative colitis: the i Support Therapy–Access to Rapid Treatment (iSTART) approach

    Get PDF
    Symptomatic ulcerative colitis (UC) can be a chronic, disabling condition. Flares in disease activity are associated with many of the negative impacts of mild-to-moderate UC. Rapid resolution of flares can provide benefits to patients and healthcare systems. i Support Therapy–Access to Rapid Treatment (iSTART) introduces patient-centered care for mild-to-moderate UC. iSTART provides patients with the ability to self-assess symptomology and self-start a short course of second-line treatment when necessary. An international panel of experts produced consensus statements and recommendations. These were informed by evidence from systematic reviews on the epidemiology, mesalazine (5-ASA) treatment, and patient use criteria for second-line therapy in UC. Optimized 5-ASA is the first-line treatment in all clinical guidelines, but may not be sufficient to induce remission in all patients. Corticosteroids should be prescribed as second-line therapy when needed, with budesonide MMX¼ being a preferred steroid option. Active involvement of suitable patients in management of UC flares has the potential to improve therapy, with patients able to show good accuracy for flare self-assessment using validated tools. There is a place in the UC treatment pathway for an approach such as iSTART, which has the potential to provide patient, clinical and economic benefits
    • 

    corecore