22 research outputs found

    Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import

    Get PDF
    The common non-steroidal anti-inflammatory drug ibuprofen has been associated with a reduced risk of some age-related pathologies. However, a general pro-longevity role for ibuprofen and its mechanistic basis remains unclear. Here we show that ibuprofen increased the lifespan of Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster, indicative of conserved eukaryotic longevity effects. Studies in yeast indicate that ibuprofen destabilizes the Tat2p permease and inhibits tryptophan uptake. Loss of Tat2p increased replicative lifespan (RLS), but ibuprofen did not increase RLS when Tat2p was stabilized or in an already long-lived strain background impaired for aromatic amino acid uptake. Concomitant with lifespan extension, ibuprofen moderately reduced cell size at birth, leading to a delay in the G1 phase of the cell cycle. Similar changes in cell cycle progression were evident in a large dataset of replicatively long-lived yeast deletion strains. These results point to fundamental cell cycle signatures linked with longevity, implicate aromatic amino acid import in aging and identify a largely safe drug that extends lifespan across different kingdoms of life.The open access fee for this work was funded through the Texas A&M University Open Access to Knowledge (OAK) Fund

    Preliminary study of endophytic fungi in timothy (Phleum pratense) in Estonia

    No full text
    Timothy (Phleum pratense L.) is an important agricultural grass in Europe and North America, but there is little research into the occurrence and abundance of fungal endophyte species associated with this grass. The aim of this study was to identify fungal endophytes living within P. pratense and to determine if additional moisture applied during the growing season increases the diversity of endophytic fungi. We studied 58 isolates obtained from surface-sterilised blades of 60 P. pratense plants collected from RÔka Free Air Humidity Manipulation experimental plots (FAHM), Estonia. Morphological and molecular methods were used for isolate identification. As a result, 45 strains from 10 different taxa were identified, all belonging to Ascomycota. Five species were found to be new to P. pratense

    Animal-like prostaglandins in marine microalgae

    No full text
    Diatoms are among the most successful primary producers in ocean and freshwater environments. Deriving from a secondary endosymbiotic event, diatoms have a mixed genome containing bacterial, animal and plant genes encoding for metabolic pathways that may account for their evolutionary success. Studying the transcriptomes of two strains of the diatom Skeletonema marinoi, we report, for the first time in microalgae, an active animal-like prostaglandin pathway that is differentially expressed in the two strains. Prostaglandins are hormone-like mediators in many physiological and pathological processes in mammals, playing a pivotal role in inflammatory responses. They are also present in macroalgae and invertebrates, where they act as defense and communication mediators. The occurrence of animal-like prostaglandins in unicellular photosynthetic eukaryotes opens up new intriguing perspectives on the evolution and role of these molecules in the marine environment as possible mediators in cell-to-cell signaling, eventually influencing population dynamics in the plankton
    corecore