38 research outputs found

    Low Voltage Electrohydraulic Actuators for Untethered Robotics

    Full text link
    Rigid robots can be precise in repetitive tasks but struggle in unstructured environments. Nature's versatility in such environments inspires researchers to develop biomimetic robots that incorporate compliant and contracting artificial muscles. Among the recently proposed artificial muscle technologies, electrohydraulic actuators are promising since they offer comparable performance to mammalian muscles in terms of speed and power density. However, they require high driving voltages and have safety concerns due to exposed electrodes. These high voltages lead to either bulky or inefficient driving electronics that make untethered, high-degree-of-freedom bio-inspired robots difficult to realize. Here, we present low voltage electrohydraulic actuators (LEAs) that match mammalian skeletal muscles in average power density (50.5 W/kg) and peak strain rate (971 percent/s) at a driving voltage of just 1100 V. This driving voltage is approx. 5 - 7 times lower compared to other electrohydraulic actuators using paraelectric dielectrics. Furthermore, LEAs are safe to touch, waterproof, and self-clearing, which makes them easy to implement in wearables and robotics. We characterize, model, and physically validate key performance metrics of the actuator and compare its performance to state-of-the-art electrohydraulic designs. Finally, we demonstrate the utility of our actuators on two muscle-based electrohydraulic robots: an untethered soft robotic swimmer and a robotic gripper. We foresee that LEAs can become a key building block for future highly-biomimetic untethered robots and wearables with many independent artificial muscles such as biomimetic hands, faces, or exoskeletons.Comment: Stephan-Daniel Gravert and Elia Varini contributed equally to this wor

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Affiliate marketing in travel and tourism

    No full text
    div_BaMpub1390pu

    Low-voltage electrohydraulic actuators for untethered robotics

    No full text
    Rigid robots can be precise but struggle in environments where compliance, robustness to disturbances, or energy efficiency is crucial. This has led researchers to develop biomimetic robots incorporating soft artificial muscles. Electrohydraulic actuators are promising artificial muscles that perform comparably to mammalian muscles in speed and power density. However, their operation requires several thousand volts. The high voltage leads to bulky and inefficient driving electronics. Here, we present hydraulically amplified low-voltage electrostatic (HALVE) actuators that match mammalian skeletal muscles in average power density (50.5 watts per kilogram) and peak strain rate (971% per second) at a 4.9 times lower driving voltage (1100 volts) compared to the state of the art. HALVE actuators are safe to touch, are waterproof, and exhibit self-clearing properties. We characterize, model, and validate key performance metrics of our actuator. Last, we demonstrate the utility of HALVE actuators on a robotic gripper and a soft robotic swimmer.ISSN:2375-254

    Polymeric nano-materials for corrosion control of steel in concrete

    No full text
    Polymeric nano-materials utilization in reinforced concrete, aiming to deal with steel corrosion was developed in previous works. Promising results were obtained with PEO–b–PS nano-formations, both in terms of enhanced bulk matrix properties and improved steel corrosion resistance. Recent research has been focusing on a cheaper and commercially available polymer, Pluronic P123. Pluronic is able to self assemble into micelles and/or vesicles but their sensitivity towards the environmental medium is a drawback: for this reason, a study on Pluronic micelles stability in different solutions has been carried out. A stabilization process against dissociation of micelles was also performed. Both stabilized and non-stabilized micelles were tested in model solutions in terms of their influence on steel corrosion resistance.Structural EngineeringCivil Engineering and Geoscience
    corecore