1,087 research outputs found

    Modelling and feedback control design for quantum state preparation

    Get PDF
    The goal of this article is to provide a largely self-contained introduction to the modelling of controlled quantum systems under continuous observation, and to the design of feedback controls that prepare particular quantum states. We describe a bottom-up approach, where a field-theoretic model is subjected to statistical inference and is ultimately controlled. As an example, the formalism is applied to a highly idealized interaction of an atomic ensemble with an optical field. Our aim is to provide a unified outline for the modelling, from first principles, of realistic experiments in quantum control

    Feedback control of quantum state reduction

    Get PDF
    Feedback control of quantum mechanical systems must take into account the probabilistic nature of quantum measurement. We formulate quantum feedback control as a problem of stochastic nonlinear control by considering separately a quantum filtering problem and a state feedback control problem for the filter. We explore the use of stochastic Lyapunov techniques for the design of feedback controllers for quantum spin systems and demonstrate the possibility of stabilizing one outcome of a quantum measurement with unit probability

    Deterministic Dicke state preparation with continuous measurement and control

    Get PDF
    We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.Comment: Additional information is available at http://minty.caltech.edu/Ensemble

    Effect of Short Term Exercise and High Fat Diet on Skeletal Muscle miR133a

    Get PDF
    Micro RNAs (miR) are small non-coding RNA that regulate gene expression at the post-transcriptional level. miR133a is abundant in cardiac and skeletal muscle. In skeletal muscle, miR133a is best known for its regulatory role in myogenesis and differentiation. Nie (2016) found that muscle miR133a expression increased after acute exercise and with 12w of treadmill exercise training in mice. Knockdown of miR133a in transgenic mice resulted in blunted skeletal muscle mitochondrial biogenesis and function in response to exercise training (Nie, 2016) suggesting a role for miR133a in regulating the normal skeletal muscle metabolic adaptive response to exercise. Among other miR, skeletal muscle miR133a is reported as downregulated in insulin-resistant muscle. Insulin resistance in mice fed a high-fat diet is detectable after 3 days on diet (Lee, 2011). In this study, voluntary, rather than forced, exercise was employed to test whether miR133a expression is regulated early in the adoption of increased daily physical activity

    Feedback control of spin systems

    Full text link
    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.Comment: 16 pages, 15 figure

    c-Met-Dependent Multipotent Labyrinth Trophoblast Progenitors Establish Placental Exchange Interface

    Get PDF
    SummaryThe placenta provides the interface for gas and nutrient exchange between the mother and the fetus. Despite its critical function in sustaining pregnancy, the stem/progenitor cell hierarchy and molecular mechanisms responsible for the development of the placental exchange interface are poorly understood. We identified an Epcamhi labyrinth trophoblast progenitor (LaTP) in mouse placenta that at a clonal level generates all labyrinth trophoblast subtypes, syncytiotrophoblasts I and II, and sinusoidal trophoblast giant cells. Moreover, we discovered that hepatocyte growth factor/c-Met signaling is required for sustaining proliferation of LaTP during midgestation. Loss of trophoblast c-Met also disrupted terminal differentiation and polarization of syncytiotrophoblasts, leading to intrauterine fetal growth restriction, fetal liver hypocellularity, and demise. Identification of this c-Met-dependent multipotent LaTP provides a landmark in the poorly defined placental stem/progenitor cell hierarchy and may help us understand pregnancy complications caused by a defective placental exchange

    Quantum projection filter for a highly nonlinear model in cavity QED

    Get PDF
    Both in classical and quantum stochastic control theory a major role is played by the filtering equation, which recursively updates the information state of the system under observation. Unfortunately, the theory is plagued by infinite-dimensionality of the information state which severely limits its practical applicability, except in a few select cases (e.g. the linear Gaussian case.) One solution proposed in classical filtering theory is that of the projection filter. In this scheme, the filter is constrained to evolve in a finite-dimensional family of densities through orthogonal projection on the tangent space with respect to the Fisher metric. Here we apply this approach to the simple but highly nonlinear quantum model of optical phase bistability of a stongly coupled two-level atom in an optical cavity. We observe near-optimal performance of the quantum projection filter, demonstrating the utility of such an approach.Comment: 19 pages, 6 figures. A version with high quality images can be found at http://minty.caltech.edu/papers.ph

    A Quantum Langevin Formulation of Risk-Sensitive Optimal Control

    Full text link
    In this paper we formulate a risk-sensitive optimal control problem for continuously monitored open quantum systems modelled by quantum Langevin equations. The optimal controller is expressed in terms of a modified conditional state, which we call a risk-sensitive state, that represents measurement knowledge tempered by the control purpose. One of the two components of the optimal controller is dynamic, a filter that computes the risk-sensitive state. The second component is an optimal control feedback function that is found by solving the dynamic programming equation. The optimal controller can be implemented using classical electronics. The ideas are illustrated using an example of feedback control of a two-level atom

    Effects of larval growth condition and water availability on desiccation resistance and its physiological basis in adult Anopheles gambiae sensu stricto

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Natural populations of the malaria mosquito <it>Anopheles gambiae </it>s.s. are exposed to large seasonal and daily fluctuations in relative humidity and temperature, which makes coping with drought a crucial aspect of their ecology.</p> <p>Methods</p> <p>To better understand natural variation in desiccation resistance in this species, the effects of variation in larval food availability and access to water as an adult on subsequent phenotypic quality and desiccation resistance of adult females of the Mopti chromosomal form were tested experimentally.</p> <p>Results</p> <p>It was found that, under normal conditions, larval food availability and adult access to water had only small direct effects on female wet mass, dry mass, and water, glycogen and body lipid contents corrected for body size. In contrast, when females subsequently faced a strong desiccation challenge, larval food availability and adult access to water had strong carry-over effects on most measured physiological and metabolic parameters, and affected female survival. Glycogen and water content were the most used physiological reserves in relative terms, but their usage significantly depended on female phenotypic quality. Adult access to water significantly influenced the use of water and body lipid reserves, which subsequently affected desiccation resistance.</p> <p>Conclusions</p> <p>These results demonstrate the importance of growth conditions and water availability on adult physiological status and subsequent resistance to desiccation.</p
    • 

    corecore