57 research outputs found

    Recovery of the herbaceous layer in the young silver birch and black alder stands that developed spontaneously after a forest fire

    Get PDF
    The studies, which were conducted in southern Poland, focused on the recovery of the herb layer in 17-year-old post-fire silver birch and black alder forests. Although both types of stands, which are of the same age, developed spontaneously, the alder stands occupied damper sites (with thicker A horizons that survived the fire) than those in the birch forests. We surveyed the migration rates of 44 woodland species, primarily ancient woodland indicators, into both forests and the potential differences in these rates depending on their moisture regime and the community type represented by unburned forests, which were treated as the source of the woodland species pool. Additionally, the role of local depressions with high humidity that were covered by post-fire alder woods in the colonization process, as well as species survivorship and recolonisation, were estimated. Woodland species showed diverse migration paces among the sites; most of them migrated faster on more fertile sites with a higher humidity. Small patches of post-fire alder woods contributed to the recolonisation process since many woodland species in the herb layer survived the fire due to its high humidity, which inhibited the intensity of the forest fire. The recovery of woodland species in post-fire woods is the combined effect of regeneration, which relies on autochthonic propagules, and secondary succession, which is based on allochthonic propagules. Local depressions, which provide refuges for fire-sensitive, dispersal-limited species, contribute to their survivorship and thus to the successive recovery of herbaceous layers after a fire

    Dispersal timing, palatability and caching of acorns of Aesculus turbinata Bl.

    Get PDF
    Aesculus turbinata acorns were dispersed earlier than other acorn-producing species and are removed completely by rodents, although the acorns are unpalatable. The dispersal timing and low palatability to rodents on A. turbinata acorns promote the seed caching by rodents, facilitating the seedling emergence is possible even in lower-seeding years

    An application of MeSH enrichment analysis in livestock

    Get PDF
    An integral part of functional genomics studies is to assess the enrichment of specific biological terms in lists of genes found to be playing an important role in biological phenomena. Contrasting the observed frequency of annotated terms with those of the background is at the core of overrepresentation analysis (ORA). Gene Ontology (GO) is a means to consistently classify and annotate gene products and has become a mainstay in ORA. Alternatively, Medical Subject Headings (MeSH) offers a comprehensive life science vocabulary including additional categories that are not covered by GO. Although MeSH is applied predominantly in human and model organism research, its full potential in livestock genetics is yet to be explored. In this study, MeSH ORA was evaluated to discern biological properties of identified genes and contrast them with the results obtained from GO enrichment analysis. Three published datasets were employed for this purpose, representing a gene expression study in dairy cattle, the use of SNPs for genome-wide prediction in swine and the identification of genomic regions targeted by selection in horses. We found that several overrepresented MeSH annotations linked to these gene sets share similar concepts with those of GO terms. Moreover, MeSH yielded unique annotations, which are not directly provided by GO terms, suggesting that MeSH has the potential to refine and enrich the representation of biological knowledge. We demonstrated that MeSH can be regarded as another choice of annotation to draw biological inferences from genes identified via experimental analyses. When used in combination with GO terms, our results indicate that MeSH can enhance our functional interpretations for specific biological conditions or the genetic basis of complex traits in livestock species
    corecore