982 research outputs found

    ENCORE: An Extended Contractor Renormalization algorithm

    Get PDF
    Contractor renormalization (CORE) is a real-space renormalization-group method to derive effective Hamiltionians for microscopic models. The original CORE method is based on a real-space decomposition of the lattice into small blocks and the effective degrees of freedom on the lattice are tensor products of those on the small blocks. We present an extension of the CORE method that overcomes this restriction. Our generalization allows the application of CORE to derive arbitrary effective models whose Hilbert space is not just a tensor product of local degrees of freedom. The method is especially well suited to search for microscopic models to emulate low-energy exotic models and can guide the design of quantum devices.Comment: 5 pages, 4 figure

    Orbital Order Effect of Two-Dimensional Spin Gap System for CaV4O9

    Full text link
    Effects of possible orbital order in magnetic properties of two-dimensional spin gap system for CaV4_4O9_9 are investigated theoretically. After analyzing experimental data, we show that single orbital models assumed in the literature are insufficient to reproduce the data. To understand the origin of the discrepancy, we assume that in d1d^1 state of V, dxzd_{xz} and dyzd_{yz} orbitals have substantial contributions in the lowest-energy atomic level which leads to a double-degeneracy. We study possible configurations of the orbital order. By exact diagonalization and perturbation expansion, we calculate the susceptibility, wavenumber dependence of low-lying excitations and equal-time spin-spin correlations which is related to integrated intensity of the neutron inelastic scattering. These quantities sensitively depend on the configuration of the orbital order. The calculated results for some configurations of the orbital order reproduce many experimental results much better than the previous single-orbital models. However some discrepancy still remains to completely reproduce all of the reported experimental results. To understand the origin of these discrepancies, we point out the possible importance of the partially occupied dxyd_{xy} orbital in addition to orbital order of partially filled dxzd_{xz} and dyzd_{yz} orbitals.Comment: 19 pages LATEX, 15 postscript figures, using jpsj.sty,to be published in J.Phys.Soc.Jpn. Vol.67 No.2 (1998

    Supersolid phase induced by correlated hopping in spin-1/2 frustrated quantum magnets

    Full text link
    We show that correlated hopping of triplets, which is often the dominant source of kinetic energy in dimer-based frustrated quantum magnets, produces a remarkably strong tendency to form supersolid phases in a magnetic field. These phases are characterized by simultaneous modulation and ordering of the longitudinal and transverse magnetization respectively. Using Quantum Monte Carlo and a semiclassical approach for an effective hard-core boson model with nearest-neighbor repulsion on a square lattice, we prove in particular that a supersolid phase can exist even if the repulsion is not strong enough to stabilize an insulating phase at half-filling. Experimental implications for frustrated quantum antiferromagnets in a magnetic field at zero and finite temperature are discussed.Comment: 4 pages; 4 figures; published versio

    From the Cooper problem to canted supersolids in Bose-Fermi mixtures

    Get PDF
    We calculate the phase diagram of the Bose-Fermi Hubbard model on the 3d cubic lattice at fermionic half filling and bosonic unit filling by means of single-site dynamical mean-field theory. For fast bosons, this is equivalent to the Cooper problem in which the bosons can induce s-wave pairing between the fermions. We also find miscible superfluid and canted supersolid phases depending on the interspecies coupling strength. In contrast, slow bosons favor fermionic charge density wave structures for attractive fermionic interactions. These competing instabilities lead to a rich phase diagram within reach of cold gas experiments.Comment: 5 pages, 4 figures; replaced with published versio

    Diagrammatic Quantum Monte Carlo solution of the two-dimensional Cooperon-Fermion model

    Full text link
    We investigate the two-dimensional cooperon-fermion model in the correlated regime with a new continuous-time diagrammatic determinant quantum Monte Carlo (DDQMC) algorithm. We estimate the transition temperature TcT_{c}, examine the effectively reduced band gap and cooperon mass, and find that delocalization of the cooperons enhances the diamagnetism. When applied to diamagnetism of the pseudogap phase in high-TcT_{c} cuprates, we obtain results in a qualitative agreement with recent torque magnetization measurements.Comment: 8 pages, 11 figure

    Interacting classical dimers on the square lattice

    Full text link
    We study a model of close-packed dimers on the square lattice with a nearest neighbor interaction between parallel dimers. This model corresponds to the classical limit of quantum dimer models [D.S. Rokhsar and S.A. Kivelson, Phys. Rev. Lett.{\bf 61}, 2376 (1988)]. By means of Monte Carlo and Transfer Matrix calculations, we show that this system undergoes a Kosterlitz-Thouless transition separating a low temperature ordered phase where dimers are aligned in columns from a high temperature critical phase with continuously varying exponents. This is understood by constructing the corresponding Coulomb gas, whose coupling constant is computed numerically. We also discuss doped models and implications on the finite-temperature phase diagram of quantum dimer models.Comment: 4 pages, 4 figures; v2 : Added results on doped models; published versio

    Dynamical mean field solution of the Bose-Hubbard model

    Full text link
    We present the effective action and self-consistency equations for the bosonic dynamical mean field (B-DMFT) approximation to the bosonic Hubbard model and show that it provides remarkably accurate phase diagrams and correlation functions. To solve the bosonic dynamical mean field equations we use a continuous-time Monte Carlo method for bosonic impurity models based on a diagrammatic expansion in the hybridization and condensate coupling. This method is readily generalized to bosonic mixtures, spinful bosons, and Bose-Fermi mixtures.Comment: 10 pages, 3 figures. includes supplementary materia

    Universal critical temperature for Kosterlitz-Thouless transitions in bilayer quantum magnets

    Full text link
    Recent experiments show that double layer quantum Hall systems may have a ground state with canted antiferromagnetic order. In the experimentally accessible vicinity of a quantum critical point, the order vanishes at a temperature T_{KT} = \kappa H, where H is the magnetic field and \kappa is a universal number determined by the interactions and Berry phases of the thermal excitations. We present quantum Monte Carlo simulations on a model spin system which support the universality of \kappa and determine its numerical value. This allows experimental tests of an intrinsically quantum-mechanical universal quantity, which is not also a property of a higher dimensional classical critical point.Comment: 5 pages, 4 figure
    • …
    corecore