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Contractor renormalization (CORE) is a real-space renlizataon-group method to derive effective Hamil-
tionians for microscopic models. The original CORE methedased on a real-space decomposition of the
lattice into small blocks and the effective degrees of fomean the lattice are tensor products of those on the
small blocks. We present an extension of the CORE methodtleaitomes this restriction. Our generalization
allows the application of CORE to derive arbitrary effeetmodels whose Hilbert space is not just a tensor
product of local degrees of freedom. The method is espgaiall suited to search for microscopic models to
emulate low-energy exotic models and can guide the desigoaritum devices.

PACS numbers: 87.55.kd,03.67.Ac,02.70.-¢c,03.67.Pp

I. INTRODUCTION effective Hamiltonian includes sizable long-range intéicns
and/or states with a vanishing projection on the restribtesis

. are present in the low-energy spectrum, one can conclutle tha

|dentifying the emergent onv-en_ergy degre¢§ of freedom "he considered microscopic model is not well approximated
astrongly-correlated system is a highly nontrivial proble- by the proposed low-energy effective model. Given current

quiring considerable physical intuition and a careful yeisl interest in the emulation of exotic phases via physical node

.Of a_vailable experimenta_l datd [1]. The contractor rendfma (e.g., by using Josephson junctions or cold atomic/moéecul

Ization C&R.E) method mtroduce_d by Mornlngstqr and We'gases), we expect this approach to be useful when designing

Instein L2, ] IS & tool to systematically perform this tasly. manipulableuantum tool boxedg=inally, we note that the step

swtably selecting low-energy Io_cal_degrees of freedom ang f dividing the lattice into blocks is no longer required oea

ap_plymg a rea_ll-space ren_ormahza_tlon_procedure_, ONeman lyasirable within this context and we thus extend the metbod t

principle obtain an effective Hamiltonian which is simpler models built from geometrically-constrained degrees eéfr

than the original one.and thereforg (ideally) more amenabltaom, such as quantum dimer modelg {10, 11], where the emer-

to sgbsc_equent analytical or numerical treggent. Oé‘ rtecerbem degrees of freedom cannot be described in terms ofitenso

applications of CORE see, for example, R 4151617, 8, 9'products of local states. Below we introduce an extension of
The idea behind CORE is to divide the lattice on whichthe CORE method applicable to arbitrary basis states of the

the model is defined into blocks and to retain only a smalleffective model and illustrate the application of the metho

number of suitably chosen low-lying block eigenstates. Thewith an array of quantum Josephson junctidns [12] used to

low-energy eigenstates of the full Hamiltonian defined on amplement a topologically protected qubit [13].

cluster formed by two or more blocks are then projected onto

the restricted basis formed by tensor products of the rethin

block states. By requiring that the low-energy spectrum of . EXTENDED CORE METHOD

the full problem is exactly reproduced, an effective Hamilt

nian is obtained. The mapping onto a coarser-graineddattic i i ,

with redefined degrees of freedom is done at the expense of Ve first review the standard CORE algorittir([2, 3,14, 15]

having longer-range effective interactions. A succesaful and then contrast it to the extended CORE (dubbed ENCORE)

plication of the method relies on a fast decay of the effectiv Method proposed here.

interactions, which in turn depends on the correct choice of

the effective degrees of freedom and on the particular way th

lattice is divided into blocks, as well as on how the retained A. Standard CORE algorithm

block eigenstates are chosen. Because physical intuitida a

good idea of the relevant local degrees of freedom are needed Gijven a Hamiltoniar#{ defined on a lattice&, the standard

to obtain phySICaIIy sound reSUltS, we believe that thides t CORE a|gorithm can be described as follows:

main reason why CORE has not found a more widespread use.

The “inverse” problem of using CORE to find microscopic 1. Divide the lattice£ into disconnected small blocks

models that map well onto a desired effective low-energy B and diagonalize the Hamiltoniah within a single
Hamiltonian does not suffer from the aforementioned prob- block, keeping/ low-lying eigenstate$|¢,,)}. The
lems: because the emergent degrees of freedom are kaown subspace spanned by tensor products of these block
priori and their adequacy in describing the low-energy physics eigenstates on a clusté—formed by joining a num-

of the device ienforcedby design, the aforementioned limi- ber of elementary blocks—defines the reduced Hilbert

tations of CORE can be used to our advantage. Whenever the  space within which the effective model is derived.
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2. Diagonalize?{ on a clusterC consisting of N con-
nected blocks retaining th&1 = M lowest eigen-
states {|n)}s* with energiese,, and project them
onto the basis formed by the tensor products of the
block states,{|¢m,, ..., dm, )}, forming the pro-
jected state§|v,,) }.

3. Orthonormalize the obtained projected stdtes, ) } 1!
using a Gramm-Schmidt procedure

i) = g (160) = X 1)l ).

m<n

(1)

whereZ,, stands for the normalization of the orthogo-
nalized state.

4. The rangeN renormalized Hamiltonian is then

M

N = Z€n|7zn><7zn|

n

(2)

By construction, this Hamiltonian has the same low-
energy spectrum as the original one.

5. Writing Eq. [2) in terms of the tensor product states
{|Gmys s Py ) 11, we obtain the range¥ effective
interactions between the blocks forming the cluster af-
ter subtracting the previously calculated shorter-range
interactions

N—-1
hil...’iN - HI]‘\C]H - Z Z h”il...’iN/v (3)
N'=1 (i1,..., N

where (i1, ...,iy/) denotes the set odll connected
range/V’ subclusters. The effective rangé-Hamilto-
nian can then be written as

Z hijk + ...,

s :Zhi+zhij+
i (i,5) (i,5,k)

whereh; is the block self-energys;; the interaction be-
tween nearest-neighbor blocks,, a three-block cou-
pling, etc. up to rangeV interactions.

(4)

1. Choose a finite-size clustef and build a basis

{|pm )} for the Hilbert space of the effective model.
In the standard CORE method this effective basis is
a tensor product of the relevant states on the blocks,
whereas here it is comprised by all constrained config-
urations orC. For example, for a quantum dimer model
we generate alM/ possible dimer coverings on the clus-
terC.

2. DiagonalizeH on the cluste€, calculating the\/ low-
est eigenstate$|n)}}? with energiese, and project
them onto the restricted bas{$¢,,)}!, forming the

projected state§|v,,, )} M [1€].

3. Orthonormalize by means of a Gramm-Schmidt proce-
dure as in Eq[{1).

4. The Hamiltonian within the restricted space is then

given by Eq.[(R).

5. Writing this Hamiltonian in the restricted basis
{|ém)}M we obtain the effective model

M

Heﬂ: Z En|¢m><¢m|7/~)n><7zjn|¢m’><¢m’|

m,m’,n

®)

It is again possible to perform a cluster expansion
within ENCORE by using Eqs[13) and (4).

Note that the above discussion is for an orthonormal reésttic
basis{|¢.,)}, such as in the example discussed in Sek. IIl.
Small changes in the procedure are required if this is not the
casel[10].

Ill.  APPLICATION: EMULATION OF THE QUANTUM

DIMER MODEL

A. Array of quantum Josephson junctions

We apply the algorithm described in SEC.11 B to extract the
dimer flip amplitudet for a Josephson-junction array intro-

The successful application of the above procedure relies onduced by loffeet al. [12] to emulate a quantum dimer model
fast decay of the long-ranged effective interactions appga (QDM) [10] on a triangular lattice. This model—first investi
in Eq. [4) and therefore one chooses the restricted set of dgated by Moessner and Sondhil[11]—has the desired proper-

grees of freedom by specifying the elementary bloBkand
the retained block statg$¢,, )} /.

B. ENCORE algorithm

It is possible to extend the ideas presented in Béc. Il to

ties needed to implement a topologically protected qulit an
is given byH = H + Ha + He With

Ho=—ty [0 /1+ 1]
oy [[ZH=T+ 10 /1],

fog

(6)

constrained effective models—e.g., quantum dimer models,

loop models, and string nets—for which the relevant degreewith similar definitions for{y and#, . Parallel dimers on

of freedom are no longer formed by tensor products of blockhe same rhombus (henceforth we refer to such configurations
states but, instead, by the set of configurations on a gives ¢l asflippable rhombj flip with an amplitude and interact via a

ter satisfying the constraints of the Hamiltonian to be emu-potential strength; the sum runs over all rhombi with a given
lated. We thus present an extended algorithm using alfeenat orientation. Moessner and Sondhi showed that a topoldgical
ways of selecting the restricted degrees of freedom. ordered liquid phase exists over a finite region of the msdel’



FIG. 1. (Color online) Josephson junction array used to ateul
the quantum dimer model on a triangular lattice (shadedsJieeé ~  =-T7------"F7 - ----TFro oo TE oo oo oo '
lipses represent the dimers; see Réfs. [12] and [13] forileptaX- _ _ _ o

shaped superconducting islands (thick black lines) formagokne ~ F!G- 3: (Color online) Nonequivalent dimer flips in the teexagon
lattice with normal-state star-shaped islands (thin blaws) placed ~ Cluster [Fig[2(b)], comprising (a) two, (b) three, (c) foand (d) five
at the center of every hexagon of the kagome lattice. Coopies p dimers. Dimer flips are represented by their associausition
hop between nearest-neighbor X-shaped islands with anitafel graph dimers (thick black lines) flip to new positions (thick ligh

given by the Josephson curreft. A large ratio between the capac- INes) while observing the hard-core constraint. Only thearlying
itancesC; andCy, ensures an on-hexagon repulsiBp., to emulate triangular lattice of the JJK array is shown (shaded lineBign[d).

the hard-core dimer constraint. Figure adapted from Rél. [1 The quantityX used for gauging the validity of the mapping onto a
QDM is defined via the multi dimer flips enclosed by dashedsline

P : )

‘ V4 V& ' dCy, = 0. iglL). Usi h b-
Xvsé)(-’;gv)(’s?x" X@XQ&XQ&XQ&X ?ari]ne(zi fromO E5q(.8|f5(§:|:tlr?e tr)angiﬁg]ﬁq aErrl1\lpCI:it?J§eE geizge?]rzi?ner

e e e X%—X%—X%}( configurations¢,,,) and|¢,,/) (m # m’) is the matrix el-
(a) NN AN ementH°f(m,m’). Our results have been obtained on the
(b) clusters shown in Fid] 2.
FIG. 2: Open-boundary clusters studied: (&)x 2 (hereN = 3) The dominant off-diagonal term in the effective Hamilto-
hexagon ladders; (b) ten-hexagon cluster. nian is the two-dimer flip with amplitude This process in-

volves the creation of a virtual state with a doubly-occdpie

phase diagrami(s2 < v/t Sglf’ something confirmed in a hexagon, with energyy., in the kagome lattice and occurs

. 3 with amplitudet ~ J2/Enex [12,[13]. Two-dimer flips in
number of subsequent studies|[12, 1718, 19]. the cluster with ten hexagons are shown in Eig. 3(a). Al-

The ipsngson—ﬁnggondarrayd/ (i]‘]K) can be described by tr}ﬁough the amplitudes for all these are ideally equal, there
generalized bose-Hubbard mode are small deviations, e.g., by the configuration of the neigh
1 N t N boring dimers (effects of Coulomb interactions) or the open
H=3 Z"ﬂ'cayknk —Jn Z (b0r +bb5),  (7) poundaries. All two-dimer flips depicted in F{d. 3(a) can be
gk (5.k) seen as beingorrelatedand are considered individually at the
where the positions of the X-shaped islands in the array arg@lgorithmic level.

denoted by the indicegandk and (j, k) represents_ne?rest- Figure[3(a) shows results foras a function of the Joseph-
neighbor pairs on the kagome lattice (see Elg.il)= bib;  son coupling/;, for the various clusters and in comparison to
is the bosonic occupation number at sife.J;, is the Joseph-  second-order perturbative results. Results for the temdn
son current between two X-shaped islands, ahi the ar-  cluster are obtained by averaging the amplitudes for the pro
ray’s capacitance matrix. We restrict the analysis to treeca cesses depicted in Fd. 3(a); amplitudes for the indiviguad
of hard-core boson5 [113]. cesses are shown in FId. 4(b). The results agree up to a point
[vertical dashed lines in Figkl 4(a]} 4(c)] where the magpin
onto a QDM fails. This agreementis an indication that, for ca
B.  Two-dimer flips pacitances and Josephson currents leading to a valid nggppin
the low-energy physics of the JJK array is indeed described
In this example we focus on the off-diagonal dimer flip termby a QDM with local dimer resonances. Furthermore, it also
t in Eq. (8) from the microscopic model [Ef] (7)] with the fol- points to the absence of sizable finite-size effects in our re
lowing set of capacitancesX, = 1, Cx = 0.25, C; = 2.5, sults.
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large amplitudes for multi dimer flips indicate that the devi

C.=1-C,=025-C=25-C =05 is not properly described by the effective model. We denote

n
o
T

_ Perturbative results i the summed absolute value of the amplitudes associated to
2%2 » these multi dimer flips by, which are directly obtained as
150 72 2 i% y the off-diagonal matrix elements of the effective Hamilaom
¥ [ &A5x2 1 associated to the multi dimer flips enclosed by dashed lines
= V-v 10 Hex. in Figs.[3(b) £B(d). Figurel4(c) showsas a function of the

Josephson currenfk,. A sudden increase if at the same
] value of .J;, for which different results fot start to deviate
1 from each other in Figg] 4(a) ahH 4(b) indicates the breakdow
of the mapping. The appearance of “intruder states” in the
low-energy spectrum with negligible overlap with the hard-

core dimer configurations also indicate the breakdown of the
s 0.25 mapping. The vertical dashed line in Fig. 4(c) indicates the
i point where the first intruder state appears. Asincreases
i —:o 5 and charge fluctuations start to dominate, intruder stages d
o 1 playing multiply-occupied hexagons in the JJK array violat
§ ing the hard-core dimer constraint have their energy lodiere
o po015 eventually causing some of the projected stdtes, ) }1" to
g/ A R~ vanish.
01
i 005 IV. SUMMARY
L (©)]
'_‘ 38 We have presented an ENCORE algorithm suitable for con-
J, (mK) 4, (mK) strained effective models whose basis states are not simply

tensor products of local block states. We find that CORE is

FIG. 4: (Color online) (a) Amplitude for the two-dimer flipin the very effective in the design of quantum devices for emutgatin

JJK array obtained from the ENCORE analysis of the finite-clus exotic phases. The inadequacy of the restricted set of dsare
ters shown in Fid.J2. The (red) solid curve represents seooter P ) 9 y 9

perturbation results. (b) Results for the ten hexagon etuste ob- of freedom in accounting for a system's low-energy behavior

tained as the average (triangles) of the amplitudes of toedimer IS reflected by the presence of long-range terms in the aféect
processes depicted in F[g. 3(a). (c) Added absolute valretheé ~ Hamiltonian obtained from CORE and is used as a criterion in

amplitudes associated to multi dimer flips)( WhenX: is large the  deciding on whether successful emulation is achieved.
mapping onto the QDM breaks down (vertical dashed lines)taDa
for C. = 1, Cx = 0.25, C; = 2.5, andCy, = 0.5 (adapted from

Ref. [13]).
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