6,290 research outputs found

    An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation

    Full text link
    Deep convolutional neural networks (CNNs) have shown excellent performance in object recognition tasks and dense classification problems such as semantic segmentation. However, training deep neural networks on large and sparse datasets is still challenging and can require large amounts of computation and memory. In this work, we address the task of performing semantic segmentation on large data sets, such as three-dimensional medical images. We propose an adaptive sampling scheme that uses a-posterior error maps, generated throughout training, to focus sampling on difficult regions, resulting in improved learning. Our contribution is threefold: 1) We give a detailed description of the proposed sampling algorithm to speed up and improve learning performance on large images. We propose a deep dual path CNN that captures information at fine and coarse scales, resulting in a network with a large field of view and high resolution outputs. We show that our method is able to attain new state-of-the-art results on the VISCERAL Anatomy benchmark

    Quasinormal ringing of acoustic black holes in Laval nozzles: Numerical simulations

    Get PDF
    Quasinormal ringing of acoustic black holes in Laval nozzles is discussed. The equation for sounds in a transonic flow is written into a Schr\"{o}dinger-type equation with a potential barrier, and the quasinormal frequencies are calculated semianalytically. From the results of numerical simulations, it is shown that the quasinormal modes are actually excited when the transonic flow is formed or slightly perturbed, as well as in the real black hole case. In an actual experiment, however, the purely-outgoing boundary condition will not be satisfied at late times due to the wave reflection at the end of the apparatus, and a late-time ringing will be expressed as a superposition of "boxed" quasinormal modes. It is shown that the late-time ringing damps more slowly than the ordinary quasinormal ringing, while its central frequency is not greatly different from that of the ordinary one. Using this fact, an efficient way for experimentally detecting the quasinormal ringing of an acoustic black hole is discussed.Comment: 9 pages, 8 figures, accepted for publication in Physical Review

    Neural mechanisms of resistance to peer influence in early adolescence

    Get PDF
    During the shift from a parent-dependent child to a fully autonomous adult, peers take on a significant role in shaping the adolescent’s behaviour. Peer-derived influences are not always positive, however. Here we explore neural correlates of inter-individual differences in the probability of resisting peer influence in early adolescence. Using functional magnetic-resonance imaging (fMRI), we found striking differences between 10-year old children with high and low resistance to peer influence in their brain activity during observation of angry hand-movements and angry facial expressions: compared with subjects with low resistance to peer influence, individuals with high resistance showed a highly coordinated brain activity in neural systems underlying perception of action and decision making. These findings suggest that the probability of resisting peer influence depends on neural interactions during observation of emotion-laden actions

    Quiet Sun magnetic fields from space-borne observations: simulating Hinode's case

    Full text link
    We examine whether or not it is possible to derive the field strength distribution of quiet Sun internetwork regions from very high spatial resolution polarimetric observations in the visible. In particular, we consider the case of the spectropolarimeter attached to the Solar Optical Telescope aboard Hinode. Radiative magneto-convection simulations are used to synthesize the four Stokes profiles of the \ion{Fe}{1} 630.2 nm lines. Once the profiles are degraded to a spatial resolution of 0\farcs32 and added noise, we infer the atmospheric parameters by means of Milne-Eddington inversions. The comparison of the derived values with the real ones indicates that the visible lines yield correct internetwork field strengths and magnetic fluxes, with uncertainties smaller than \sim150 G, when a stray light contamination factor is included in the inversion. Contrary to the results of ground-based observations at 1\arcsec, weak fields are retrieved wherever the field is weak in the simulation.Comment: Accepted for publication in ApJ Letter

    Dynamics of multi-cored magnetic structures in the quiet Sun

    Full text link
    We report on the dynamical interaction of quiet-Sun magnetic fields and granular convection in the solar photosphere as seen by \textsc{Sunrise}. We use high spatial resolution (0\farcs 15--0\farcs 18) and temporal cadence (33 s) spectropolarimetric Imaging Magnetograph eXperiment data, together with simultaneous CN and Ca\,\textsc{ii}\,H filtergrams from \textsc{Sunrise} Filter Imager. We apply the SIR inversion code to the polarimetric data in order to infer the line of sight velocity and vector magnetic field in the photosphere. The analysis reveals bundles of individual flux tubes evolving as a single entity during the entire 23 minute data set. The group shares a common canopy in the upper photospheric layers, while the individual tubes continually intensify, fragment and merge in the same way that chains of bright points in photometric observations have been reported to do. The evolution of the tube cores are driven by the local granular convection flows. They intensify when they are "compressed" by surrounding granules and split when they are "squeezed" between two moving granules. The resulting fragments are usually later regrouped in intergranular lanes by the granular flows. The continual intensification, fragmentation and coalescence of flux results in magnetic field oscillations of the global entity. From the observations we conclude that the magnetic field oscillations first reported by \citet{2011ApJ...730L..37M} correspond to the forcing by granular motions and not to characteristic oscillatory modes of thin flux tubes.Comment: 12 pages, 7 figures. Accepted in ApJ. Animation 1 can be downloaded from: http://spg.iaa.es/download

    Mantle earthquakes frozen in mylonitized ultramafic pseudotachylytes of spinel-lherzolite facies.

    Get PDF
    We report a new type of ultramafi c pseudotachylyte that forms a fault- and injection-vein network hosted in the mantle-derived Balmuccia peridotite (Italy). In the fault vein the pseudotachylyte is now deformed and recrystallized into a spinel-lherzolite facies ultramylonite, made of a fi ne (<2 μm) aggregate of olivine, orthopyroxene, clinopyroxene, and spinel, with small amounts of amphibole and dolomite. Electron backscattered diffraction study of the ultramylonite shows a clear crystallographic preferred orientation (CPO) of olivine. The fault vein pseudotachylyte overprints a spinel-lherzolite facies amphibole-bearing mylonite, indicating that shear localization accompanying chemical reaction had taken place in the peridotite before seismic slip produced frictional melting. The occurrence of amphibole in the host mylonite and that of dolomite as well as amphibole in the matrices of ultramylonite and pseudotachylyte may indicate that fl uid was present and had evolved in its composition from H2O-rich to CO2-rich during ductile deformation with metamorphic reactions, which may account for the observed rheological transition from ductile to brittle behavior. The spinel-lherzolite facies assemblage in mylonites, P-T estimations from pyroxene geothermometry and carbonate reactions, and the type of olivine CPO in deformed pseudotachylyte indicate that both the preseismic and the postseismic ductile deformations occurred at ~800 °C and 0.7–1.1 GPa

    The formation and disintegration of magnetic bright points observed by Sunrise/IMaX

    Full text link
    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km/s set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Noteworthy is that in about 10% of the cases we observe in the vicinity of the downflows small-scale strong (exceeding 2 km/s) intergranular upflows related spatially and temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical Journal

    Annotating Medical Image Data

    Full text link

    The Pandemic beyond the Pandemic: A Scoping Review on the Social Relationships between COVID-19 and Antimicrobial Resistance

    Get PDF
    The social sciences are essential to include in the fight against both public health challenges of antimicrobial resistance (AMR) and COVID-19. In this scoping review, we document what social science knowledge has been published about the social relationship between COVID-19 and AMR and which social science interventions are suggested to address this social relationship. We analysed 23 peer-reviewed articles published between 2019 and 2021. Results emphasize that changes in antibiotic prescription behaviour, misinformation, over-burdened health systems, financial hardship, environmental impact and gaps in governance might increase the improper access and use of antibiotics during the COVID-19 pandemic, increasing AMR. The identified social sciences transformation strategies include social engagement and sensitisation, misinformation control, health systems strengthening, improved infection prevention and control measures, environmental protection, and better antimicrobial stewardship and infectious diseases governance. The review emphasizes the importance of interdisciplinary research in addressing both AMR and COVID-19
    corecore