456 research outputs found

    Magnetic Monopoles, Center Vortices and Topology of Gauge Fields

    Get PDF
    The topological properties of magnetic monopoles and center vortices arising, respectively, in Abelian and center gauges are studied in continuum Yang-Mills Theory. For this purpose the continuum analog of the maximum center gauge is constructed.Comment: talk presented at LATTICE99(topology) at Pisa, Italy, 3 page

    Finite-frequency Rayleigh wave tomography of the western Mediterranean: Mapping its lithospheric structure

    Get PDF
    We present a 3-D shear wave velocity model for the crust and upper mantle of the western Mediterranean from Rayleigh wave tomography. We analyzed the fundamental mode in the 20¿167 s period band (6.0¿50.0 mHz) from earthquakes recorded by a number of temporary and permanent seismograph arrays. Using the two-plane wave method, we obtained phase velocity dispersion curves that were inverted for an isotropic Vs model that extends from the southern Iberian Massif, across the Gibraltar Arc and the Atlas mountains to the Saharan Craton. The area of the western Mediterranean that we have studied has been the site of complex subduction, slab rollback, and simultaneous compression and extension during African-European convergence since the Oligocene. The shear velocity model shows high velocities beneath the Rif from 65 km depth and beneath the Granada Basin from ¿¿70 km depth that extend beneath the Alboran Domain to more than 250 km depth, which we interpret as a near-vertical slab dangling from beneath the western Alboran Sea. The slab appears to be attached to the crust beneath the Rif and possibly beneath the Granada Basin and Sierra Nevada where low shear velocities (3.8 km/s) are mapped to >55 km depth. The attached slab is pulling down the Gibraltar Arc crust, thickening it, and removing the continental margin lithospheric mantle beneath both Iberia and Morocco as it descends into the deeper mantle. Thin lithosphere is indicated by very low upper mantle velocities beneath the Alboran Sea, above and east of the dangling slab and beneath the Cenozoic volcanics.This research was funded by the U.S. National Science Foundation EAR-0808939. The deployment of the IberArray broadband seismic network is part of the CONSOLIDER CSD2006-00041 (Geosciences in Iberia: Integrated studies on Topography and 4-D Evolution) grant from the Spanish Ministry of Science and Innovation. Additional funding was provided by the Spanish ministry under grants CGL2010-17280 and by Generalitat de Catalunya under grant 2009 SGR 6.Peer Reviewe

    Lack of consensus in social systems

    Full text link
    We propose an exactly solvable model for the dynamics of voters in a two-party system. The opinion formation process is modeled on a random network of agents. The dynamical nature of interpersonal relations is also reflected in the model, as the connections in the network evolve with the dynamics of the voters. In the infinite time limit, an exact solution predicts the emergence of consensus, for arbitrary initial conditions. However, before consensus is reached, two different metastable states can persist for exponentially long times. One state reflects a perfect balancing of opinions, the other reflects a completely static situation. An estimate of the associated lifetimes suggests that lack of consensus is typical for large systems.Comment: 4 pages, 6 figures, submitted to Phys. Rev. Let

    Traffic on complex networks: Towards understanding global statistical properties from microscopic density fluctuations

    Get PDF
    We study the microscopic time fluctuations of traffic load and the global statistical properties of a dense traffic of particles on scale-free cyclic graphs. For a wide range of driving rates R the traffic is stationary and the load time series exhibits antipersistence due to the regulatory role of the superstructure associated with two hub nodes in the network. We discuss how the superstructure affects the functioning of the network at high traffic density and at the jamming threshold. The degree of correlations systematically decreases with increasing traffic density and eventually disappears when approaching a jamming density Rc. Already before jamming we observe qualitative changes in the global network-load distributions and the particle queuing times. These changes are related to the occurrence of temporary crises in which the network-load increases dramatically, and then slowly falls back to a value characterizing free flow

    Tangled Nature: A model of emergent structure and temporal mode among co-evolving agents

    Full text link
    Understanding systems level behaviour of many interacting agents is challenging in various ways, here we'll focus on the how the interaction between components can lead to hierarchical structures with different types of dynamics, or causations, at different levels. We use the Tangled Nature model to discuss the co-evolutionary aspects connecting the microscopic level of the individual to the macroscopic systems level. At the microscopic level the individual agent may undergo evolutionary changes due to mutations of strategies. The micro-dynamics always run at a constant rate. Nevertheless, the system's level dynamics exhibit a completely different type of intermittent abrupt dynamics where major upheavals keep throwing the system between meta-stable configurations. These dramatic transitions are described by a log-Poisson time statistics. The long time effect is a collectively adapted of the ecological network. We discuss the ecological and macroevolutionary consequences of the adaptive dynamics and briefly describe work using the Tangled Nature framework to analyse problems in economics, sociology, innovation and sustainabilityComment: Invited contribution to Focus on Complexity in European Journal of Physics. 25 page, 1 figur

    The helium atom in a strong magnetic field

    Get PDF
    We investigate the electronic structure of the helium atom in a magnetic field b etween B=0 and B=100a.u. The atom is treated as a nonrelativistic system with two interactin g electrons and a fixed nucleus. Scaling laws are provided connecting the fixed-nucleus Hamiltonia n to the one for the case of finite nuclear mass. Respecting the symmetries of the electronic Ham iltonian in the presence of a magnetic field, we represent this Hamiltonian as a matrix with res pect to a two-particle basis composed of one-particle states of a Gaussian basis set. The corresponding generalized eigenvalue problem is solved numerically, providing in the present paper results for vanish ing magnetic quantum number M=0 and even or odd z-parity, each for both singlet and triplet spin symmetry. Total electronic energies of the ground state and the first few excitations in each su bspace as well as their one-electron ionization energies are presented as a function of the magnetic fie ld, and their behaviour is discussed. Energy values for electromagnetic transitions within the M=0 sub space are shown, and a complete table of wavelengths at all the detected stationary points with respect to their field dependence is given, thereby providing a basis for a comparison with observed ab sorption spectra of magnetic white dwarfs.Comment: 21 pages, 4 Figures, acc.f.publ.in J.Phys.

    Forecasting the Early Impact of COVID-19 on Physician Supply in EU Countries

    Get PDF
    Background Many countries faced health workforce challenges even before the pandemic, such as impending retirements, negative population growth, or sub-optimal allocation of resources across health sectors. Current quantitative models are often of limited use, either because they require extensive individual-level data to be properly calibrated, or (in the absence of such data) because they are too simplistic to capture important demographic changes or disruptive epidemiological shocks such as the SARS-CoV-2 pandemic. Method We propose a population-dynamic and stock-flow-consistent approach to physician supply forecasting that is complex enough to account for dynamically changing behaviour, while requiring only publicly available time-series data for full calibration. We demonstrate the utility of this model by applying it to 21 European countries to forecast the supply of generalist and specialist physicians to 2040, and the impact of increased health care utilisation due to Covid on this supply. Results Compared with the workforce needed to maintain physician density at 2019 levels, we find that in many countries there is indeed a significant trend towards decreasing generalist density at the expense of increasing specialist density. The trends for specialists are exacerbated by expectations of negative population growth in many Southern and Eastern European countries. Compared to the expected demographic changes in the population and the health workforce, we expect a limited impact of Covid on these trends, even under conservative modelling assumptions. Finally, we generalise the approach to a multiprofessional, multi-regional and multi-sectoral model for Austria, where we find an additional suboptimal distribution in the supply of contracted versus non-contracted (private) physicians. Conclusion It is therefore vital to develop tools for decision-makers to influence the allocation and supply of doctors across specialties and sectors to address these imbalances

    Wavelets: mathematics and applications

    Full text link
    The notion of wavelets is defined. It is briefly described {\it what} are wavelets, {\it how} to use them, {\it when} we do need them, {\it why} they are preferred and {\it where} they have been applied. Then one proceeds to the multiresolution analysis and fast wavelet transform as a standard procedure for dealing with discrete wavelets. It is shown which specific features of signals (functions) can be revealed by this analysis, but can not be found by other methods (e.g., by the Fourier expansion). Finally, some examples of practical application are given (in particular, to analysis of multiparticle production}. Rigorous proofs of mathematical statements are omitted, and the reader is referred to the corresponding literature.Comment: 16 pages, 5 figures, Latex, Phys. Atom. Nuc

    Multifractality in Human Heartbeat Dynamics

    Full text link
    Recent evidence suggests that physiological signals under healthy conditions may have a fractal temporal structure. We investigate the possibility that time series generated by certain physiological control systems may be members of a special class of complex processes, termed multifractal, which require a large number of exponents to characterize their scaling properties. We report on evidence for multifractality in a biological dynamical system --- the healthy human heartbeat. Further, we show that the multifractal character and nonlinear properties of the healthy heart rate are encoded in the Fourier phases. We uncover a loss of multifractality for a life-threatening condition, congestive heart failure.Comment: 19 pages, latex2e using rotate and epsf, with 5 ps figures; to appear in Nature, 3 June, 199
    corecore