113 research outputs found

    Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations

    Get PDF
    This paper describes microfluidic experiments with human blood plasma and numerical simulations to determine the role of fluid flow in the regulation of propagation of blood clotting. We demonstrate that propagation of clotting can be regulated by different mechanisms depending on the volume-to-surface ratio of a channel. In small channels, propagation of clotting can be prevented by surface-bound inhibitors of clotting present on vessel walls. In large channels, where surface-bound inhibitors are ineffective, propagation of clotting can be prevented by a shear rate above a threshold value, in agreement with predictions of a simple reaction-diffusion mechanism. We also demonstrate that propagation of clotting in a channel with a large volume-to-surface ratio and a shear rate below a threshold shear rate can be slowed by decreasing the production of thrombin, an activator of clotting. These in vitro results make two predictions, which should be experimentally tested in vivo. First, propagation of clotting from superficial veins to deep veins may be regulated by shear rate, which might explain the correlation between superficial thrombosis and the development of deep vein thrombosis (DVT). Second, nontoxic thrombin inhibitors with high binding affinities could be locally administered to prevent recurrent thrombosis after a clot has been removed. In addition, these results demonstrate the utility of simplified mechanisms and microfluidics for generating and testing predictions about the dynamics of complex biochemical networks

    Propagation of blood clotting in the complex biochemical network of hemostasis is described by a simple mechanism

    Get PDF
    Hemostasis is the complex biochemical network that controls blood clotting. We previously described a chemical model that mimicked the dynamics of hemostasis based on a simple regulatory mechanisma threshold response due to the competition between production and removal of activators. Here, we used human blood plasma in phospholipid-coated microfluidic channels to test predictions based on this mechanism. We demonstrated that, for a given geometry of channels, clot propagation from an obstructed channel into a channel with flowing blood plasma is dependent on the shear rate in the channel with flowing blood plasma. If confirmed in vivo, these results may explain clot propagation from a small vessel to a larger, clinically relevant vessel. In addition, these results would further validate the use of modular mechanisms, simplified chemical models, and microfluidics to study complex biochemical networks

    MARCO variants are associated with phagocytosis, pulmonary tuberculosis susceptibility and Beijing lineage

    Get PDF
    Macrophage receptor with collagenous structure (MARCO) has an important role in the phagocytosis of Mycobacterium tuberculosis (M. tuberculosis). We hypothesized that MARCO polymorphisms are associated with phagocytosis, tuberculosis (TB) disease susceptibility and presentation, and infecting lineage. We used a human cellular model to examine how MARCO genotype mediates the immune response; a case-control study to investigate tuberculosis host genetic susceptibility; and a host-pathogen genetic analysis to study host-pathogen interactions. Two MARCO heterozygous (AG) genotypes (single-nucleotide polymorphisms rs2278589 and rs6751745) were associated with impaired phagocytosis of M. tuberculosis trehalose 6,6'-dimycolate-cord factor and β-glucan-coated beads in macrophages. The heterozygous genotypes of rs2278589 and rs6751745 were also associated with increased risk of pulmonary TB (PTB; rs2278589, P=0.001, odds ratio (OR)=1.6; rs6751745, P=0.009, OR=1.4), and with severe chest X-ray abnormalities (P=0.007, OR=1.6). These two genotypes were also associated with the Beijing lineage (rs2278589, P=0.001, OR=1.7; rs6751745, P=0.01, OR=1.5). Together, these results suggest that MARCO polymorphisms may regulate phagocytosis of M. tuberculosis and susceptibility and severity of PTB. They also suggest MARCO genotype and Beijing strains may interact to increase the risk of PT

    Pichia pastoris versus Saccharomyces cerevisiae:a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor

    Get PDF
    BACKGROUND: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. RESULTS: Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. CONCLUSION: Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production

    Management of intracranial tuberculous mass lesions: How long should we treat for? [version 2; peer review: 1 approved, 2 approved with reservations]

    Get PDF
    Tuberculous intracranial mass lesions are common in settings with high tuberculosis (TB) incidence and HIV prevalence. The diagnosis of such lesions, which include tuberculoma and tuberculous abscesses, is often presumptive and based on radiological features, supportive evidence of TB elsewhere and response to TB treatment. However, the treatment response is unpredictable, with lesions frequently enlarging paradoxically or persisting for many years despite appropriate TB treatment and corticosteroid therapy. Most international guidelines recommend a 9-12 month course of TB treatment for central nervous system TB when the infecting Mycobacterium tuberculosis (M.tb) strain is sensitive to first-line drugs. However, there is variation in opinion and practice with respect to the duration of TB treatment in patients with tuberculomas or tuberculous abscesses. A major reason for this is the lack of prospective clinical trial evidence. Some experts suggest continuing treatment until radiological resolution of enhancing lesions has been achieved, but this may unnecessarily expose patients to prolonged periods of potentially toxic drugs. It is currently unknown whether persistent radiological enhancement of intracranial tuberculomas after 9-12 months of treatment represents active disease, inflammatory response in a sterilized lesion or merely revascularization. The consequences of stopping TB treatment prior to resolution of lesional enhancement have rarely been explored. These important issues were discussed at the 3 International Tuberculous Meningitis Consortium meeting. Most clinicians were of the opinion that continued enhancement does not necessarily represent treatment failure and that prolonged TB therapy was not warranted in patients presumably infected with M.tb strains susceptible to first-line drugs. In this manuscript we highlight current medical treatment practices, benefits and disadvantages of different TB treatment durations and the need for evidence-based guidelines regarding the treatment duration of patients with intracranial tuberculous mass lesions

    Tuberculous meningitis: new tools and new approaches required [version 1; peer review: not peer reviewed]

    Get PDF
    Tuberculous meningitis is the most severe form of tuberculosis and causes widespread mortality and morbidity. Understanding of the epidemiology and pathogenesis is incomplete, and the optimal diagnosis and treatment are poorly defined. To generate research collaboration and coordination, as well as to promote sharing of ideas and advocacy efforts, the International Tuberculous Meningitis Research Consortium was formed in 2009. During the most recent meeting of this group in Lucknow, India, in March 2019, the Consortium decided to bring together key articles on tuberculous meningitis in one supplement. The supplement covers recent scientific updates, expert perspectives on specific clinical challenges, consensus statements on how to conduct research, and a set of priorities for future investigation

    Knowledge gaps and research priorities in tuberculous meningitis [version 1; peer review: 3 approved]

    Get PDF
    Tuberculous meningitis (TBM) is the most severe and disabling form of tuberculosis (TB), accounting for around 1-5% of the global TB caseload, with mortality of approximately 20% in children and up to 60% in persons co-infected with human immunodeficiency virus even in those treated. Relatively few centres of excellence in TBM research exist and the field would therefore benefit from greater co-ordination, advocacy, collaboration and early data sharing. To this end, in 2009, 2015 and 2019 we convened the TBM International Research Consortium, bringing together approximately 50 researchers from five continents. The most recent meeting took place on 1st and 2nd March 2019 in Lucknow, India. During the meeting, researchers and clinicians presented updates in their areas of expertise, and additionally presented on the knowledge gaps and research priorities in that field. Discussion during the meeting was followed by the development, by a core writing group, of a synthesis of knowledge gaps and research priorities within seven domains, namely epidemiology, pathogenesis, diagnosis, antimicrobial therapy, host-directed therapy, critical care and implementation science. These were circulated to the whole consortium for written input and feedback. Further cycles of discussion between the writing group took place to arrive at a consensus series of priorities. This article summarises the consensus reached by the consortium concerning the unmet needs and priorities for future research for this neglected and often fatal disease

    The current global situation for tuberculous meningitis: Epidemiology, diagnostics, treatment and outcomes

    Get PDF
    Tuberculous meningitis (TBM) results from dissemination of M. tuberculosis to the cerebrospinal fluid (CSF) and meninges. Ischaemia, hydrocephalus and raised intracranial pressure frequently result, leading to extensive brain injury and neurodisability. The global burden of TBM is unclear and it is likely that many cases are undiagnosed, with many treated cases unreported. Untreated, TBM is uniformly fatal, and even if treated, mortality and morbidity are high. Young age and human immunodeficiency virus (HIV) infection are potent risk factors for TBM, while Bacillus Calmette-Guérin (BCG) vaccination is protective, particularly in young children. Diagnosis of TBM usually relies on characteristic clinical symptoms and signs, together with consistent neuroimaging and CSF parameters. The ability to confirm the TBM diagnosis via CSF isolation of M. tuberculosis depends on the type of diagnostic tests available. In most cases, the diagnosis remains unconfirmed. GeneXpert MTB/RIF and the next generation Xpert Ultra offer improved sensitivity and rapid turnaround times, and while roll-out has scaled up, availability remains limited. Many locations rely only on acid fast bacilli smear, which is insensitive. Treatment regimens for TBM are based on evidence for pulmonary tuberculosis treatment, with little consideration to CSF penetration or mode of drug action required. The World Health Organization recommends a 12-month treatment course, although data on which to base this duration is lacking. New treatment regimens and drug dosages are under evaluation, with much higher dosages of rifampicin and the inclusion of fluoroquinolones and linezolid identified as promising innovations. The inclusion of corticosteroids at the start of treatment has been demonstrated to reduce mortality in HIV-negative individuals but whether they are universally beneficial is unclear. Other host-directed therapies show promise but evidence for widespread use is lacking. Finally, the management of TBM within health systems is sub-optimal, with drop-offs at every stage in the care cascade

    Mechanism, spectrum, consequences and management of hyponatremia in tuberculous meningitis

    Get PDF
    Hyponatremia is the commonest electrolyte abnormality in hospitalized patients and is associated with poor outcome. Hyponatremia is categorized on the basis of serum sodium into severe (< 120 mEq/L), moderate (120-129 mEq/L) and mild (130-134mEq/L) groups. Serum sodium has an important role in maintaining serum osmolality, which is maintained by the action of antidiuretic hormone (ADH) secreted from the posterior pituitary, and natriuretic peptides such as atrial natriuretic peptide and brain natriuretic peptide. These peptides act on kidney tubules via the renin angiotensin aldosterone system. Hyponatremia <120mEq/L or a rapid decline in serum sodium can result in neurological manifestations, ranging from confusion to coma and seizure. Cerebral salt wasting (CSW) and syndrome of inappropriate secretion of ADH (SIADH) are important causes of hyponatremia in tuberculosis meningitis (TBM). CSW is more common than SIADH. The differentiation between CSW and SIADH is important because treatment of one may be detrimental for the other; evidence of hypovolemia in CSW and euvolemia or hypervolemia in SIADH is used for differentiation. In addition, evidence of dehydration, polyuria, negative fluid balance as assessed by intake output chart, weight loss, laboratory evidence and sometimes central venous pressure are helpful in the diagnosis of these disorders. Volume contraction in CSW may be more protracted than hyponatremia and may contribute to border zone infarctions in TBM. Hyponatremia should be promptly and carefully treated by saline and oral salt, while 3% saline should be used in severe hyponatremia with coma and seizure. In refractory patients with hyponatremia, fludrocortisone helps in early normalization of serum sodium without affecting polyuria or functional outcome. In SIADH, V2 receptor antagonist conivaptan or tolvaptan may be used if the patient is not responding to fluid restriction. Fluid restriction in SIADH has not been found to be beneficial in TBM and should be avoided

    Management of intracranial tuberculous mass lesions: how long should we treat for? [version 3; peer review: 3 approved]

    Get PDF
    Tuberculous intracranial mass lesions are common in settings with high tuberculosis (TB) incidence and HIV prevalence. The diagnosis of such lesions, which include tuberculoma and tuberculous abscesses, is often presumptive and based on radiological features, supportive evidence of TB elsewhere and response to TB treatment. However, the treatment response is unpredictable, with lesions frequently enlarging paradoxically or persisting for many years despite appropriate TB treatment and corticosteroid therapy. Most international guidelines recommend a 9-12 month course of TB treatment for central nervous system TB when the infecting Mycobacterium tuberculosis (M.tb) strain is sensitive to first-line drugs. However, there is variation in opinion and practice with respect to the duration of TB treatment in patients with tuberculomas or tuberculous abscesses. A major reason for this is the lack of prospective clinical trial evidence. Some experts suggest continuing treatment until radiological resolution of enhancing lesions has been achieved, but this may unnecessarily expose patients to prolonged periods of potentially toxic drugs. It is currently unknown whether persistent radiological enhancement of intracranial tuberculomas after 9-12 months of treatment represents active disease, inflammatory response in a sterilized lesion or merely revascularization. The consequences of stopping TB treatment prior to resolution of lesional enhancement have rarely been explored. These important issues were discussed at the 3rd International Tuberculous Meningitis Consortium meeting. Most clinicians were of the opinion that continued enhancement does not necessarily represent treatment failure and that prolonged TB therapy was not warranted in patients presumably infected with M.tb strains susceptible to first-line drugs. In this manuscript we highlight current medical treatment practices, benefits and disadvantages of different TB treatment durations and the need for evidence-based guidelines regarding the treatment duration of patients with intracranial tuberculous mass lesions
    • …
    corecore