36 research outputs found

    OsHKT1;4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress

    Get PDF
    Background: Na+ exclusion from leaf blades is one of the key mechanisms for glycophytes to cope with salinity stress. Certain class I transporters of the high-affinity K+ transporter (HKT) family have been demonstrated to mediate leaf blade-Na+ exclusion upon salinity stress via Na+-selective transport. Multiple HKT1 transporters are known to function in rice (Oryza sativa). However, the ion transport function of OsHKT1;4 and its contribution to the Na+ exclusion mechanism in rice remain to be elucidated. Results: Here, we report results of the functional characterization of the OsHKT1;4 transporter in rice. OsHKT1;4 mediated robust Na+ transport in Saccharomyces cerevisiae and Xenopus laevis oocytes. Electrophysiological experiments demonstrated that OsHKT1;4 shows strong Na+ selectivity among cations tested, including Li+, Na+, K+, Rb+, Cs+, and NH4 +, in oocytes. A chimeric protein, EGFP-OsHKT1;4, was found to be functional in oocytes and targeted to the plasma membrane of rice protoplasts. The level of OsHKT1;4 transcripts was prominent in leaf sheaths throughout the growth stages. Unexpectedly however, we demonstrate here accumulation of OsHKT1;4 transcripts in the stem including internode II and peduncle in the reproductive growth stage. Moreover, phenotypic analysis of OsHKT1;4 RNAi plants in the vegetative growth stage revealed no profound influence on the growth and ion accumulation in comparison with WT plants upon salinity stress. However, imposition of salinity stress on the RNAi plants in the reproductive growth stage caused significant Na+ overaccumulation in aerial organs, in particular, leaf blades and sheaths. In addition, 22Na+ tracer experiments using peduncles of RNAi and WT plants suggested xylem Na+ unloading by OsHKT1;4. Conclusions: Taken together, our results indicate a newly recognized function of OsHKT1;4 in Na+ exclusion in stems together with leaf sheaths, thus excluding Na+ from leaf blades of a japonica rice cultivar in the reproductive growth stage, but the contribution is low when the plants are in the vegetative growth stage

    Metal accumulation and its effect on leaf herbivory in an allopolyploid species Arabidopsis kamchatica inherited from a diploid hyperaccumulator A. halleri

    Full text link
    Excessive amounts of metal ions in soil are toxic for most plant species, yet metal can also facilitate plant survival by elemental defense against herbivores and pathogens. Zinc and cadmium hyperaccumulation in Arabidopsis halleri is known to be effective for the defense against natural enemies. The allotetraploid species A. kamchatica, derived from A. halleri and a non‐hyperaccumulator A. lyrata, has a lower hyperaccumulation level of zinc than A. halleri, but its significance for elemental defense remains unknown. In this study, we evaluated the accumulation levels of zinc and cadmium in the allotetraploid compared with its diploid progenitors, and evaluated the contribution of metal treatments to anti‐herbivore resistance under field conditions. The accumulation level of zinc in A. kamchatica was intermediate between the progenitors, but that of cadmium was lower than in both diploid progenitors. The elemental defense of A. kamchatica and A. halleri was supported by a field experiment comparing the herbivory level between a control group and metal‐supplemented plants. Moreover, the effect of elemental defense was lower in A. kamchatica than in the hyperaccumulator progenitor A. halleri, which is consistent with the metal accumulation level. This result reveals that the allotetraploid plant inherited its hyperaccumulating ability from one progenitor as an advantageous trait but at an intermediate level

    Radiocesium transfer rates among pigs fed haylage contaminated with low levels of cesium at two differentiation stages.

    No full text
    The objective of this study was to determine the radiocesium transfer rates of pigs fed haylage contaminated with low levels of cesium at different growth stages. We measured the body weight of juvenile and adult pigs during the treatment period to confirm their health status. We also performed pig blood hematologic and biochemical analyses at both growth stages. To our knowledge, this is the first study to report pig radiocesium transfer coefficient rates after 1 month of chronic oral treatment, which is the period assumed to be required for body equilibrium under a diet of radiocesium-contaminated food. The results showed higher radiocesium retention rates in the kidneys, liver, spleen, genitals, psoas major, bladder, thyroid, and urine than in the blood and bone (tibia and femur) of pigs at both growth stages. The radiocesium retention levels were generally higher in juvenile pigs than in adult pigs, with the highest transfer coefficient ratio in the kidneys (16.2%)
    corecore