59 research outputs found

    Apatite: a U-Pb thermochronometer or geochronometer?

    Get PDF
    Apatite is an accessory mineral that is frequently found in both igneous and clastic sedimentary rocks. It is conventionally considered to be characterized by a closure temperature range between 375 and 600 °C and hence has been employed to address mid-temperature thermochronology questions relevant to the reconstruction of thermal events in the middle to lower crust. However, questions remain as to whether apatite faithfully records thermally-activated volume diffusion profiles, or rather is influenced by recrystallization and new growth processes. We present a case study of two apatite samples from the Akia Terrane in Greenland that help chart some of the post magmatic history of this region. Apatite in a tonalitic gneiss has distinct U-enriched rims and its U-Pb apparent ages correlate with Mn chemistry, with a high Mn group yielding an age of c. 2813 Ma. The U-Pb and trace element chemistry and morphology support an interpretation in which these apatite crystals are originally igneous and record cooling after metamorphism, with subsequent generation of discrete new rims. Epidote observed in the sample implies a <600 °C fluid infiltration event associated with apatite rims. The second sample, from a granitic leucosome, contains apparently homogeneous apatite, however U-Pb analyses define two distinct discordia arrays with different common Pb components. An older, c. 2490 Ma, component is associated with elevated Sr, whereas a younger, c. 1800 Ma, component has lower Sr concentration. A depth profile reveals an older core with progressively younger ages towards a compositionally discrete late Paleoproterozoic rim. The chemical and age profiles do not directly correspond, implying different diffusion rates between trace elements and U and Pb. The variation in core ages is interpreted to reflect radiogenic-Pb loss from a metamorphic population during new rim growth. The younger, c. 1800 Ma U-Pb age is interpreted to date new apatite growth from a compositionally distinct reservoir driven by tectonothermal and fluid activity, consistent with regional mica Ar-Ar ages. Results from these two samples show that recrystallization, dissolution and regrowth processes likely formed the younger rim overgrowths, and at temperatures below those often considered to be closure temperatures for Pb diffusion in apatite. The results from these samples imply many apatite grains may not record simple thermally activated Pb diffusion profiles and cautions against inversion of apatite U-Pb data to thermal histories without detailed knowledge of the grain growth/alteration processes

    Mesoarchean partial melting of mafic crust and tonalite production during high-T–low-P stagnant tectonism, Akia Terrane, West Greenland

    Get PDF
    The Ministry of Mineral Resources and Labour, Greenland Government supported field and analytical work. NJG acknowledges support from Australian Research Council grant FL160100168.Different geodynamic models exist for the growth and differentiation of Archean continental crust, ranging from horizontal tectonics with subduction zones to vertical tectonics with foundering of greenstone sequences. U–Pb zircon geochronology, field relationships, and pressure–temperature constraints from granulite-facies metabasite of the Akia Terrane of the North Atlantic Craton in West Greenland show that this terrane grew through two major magmatic growth episodes: an earlier one at c. 3.2 Ga, and a later one at c. 3.05–2.97 Ga. Phase equilibrium modelling for assemblages related to the latter indicates temperatures of >800 °C at 0.8 GPa in the stability field of garnet. U–Pb zircon geochronology and existing Hf isotope data are also consistent with a model involving protracted Mesoarchean magmatic growth with limited mantle addition during a prolonged period of high temperatures in a relatively stagnant tectonic regime prior to Neoarchean compressional tectonism in the Akia Terrane.Publisher PDFPeer reviewe

    Titanite petrochronology linked to phase equilibrium modelling constrains tectono-thermal events in the Akia Terrane, West Greenland

    Get PDF
    GeoHistory Facility instruments (part of the John de Laeter Centre) were funded via an Australian Geophysical Observing System (AGOS) grant provided to AuScope by the AQ44 Australian Education Investment Fund.The Mesoarchean Akia Terrane in West Greenland contains a detailed magmatic and metamorphic mineral growth record from 3.2 Ga to at least c. 2.5 Ga. This time span makes this region an important case study in the quest to track secular changes in geodynamic style which may ultimately inform on the development of plate tectonics as a globally linked system of lateral rigid plate motions. The common accessory mineral titanite has recently become recognised as a powerful high temperature geochronometer whose chemistry may chart the thermal conditions of its growth. Furthermore, titanite offers the potential to record the time-temperature history of mafic lithologies, which may lack zircon. Although titanite suffers from higher levels of common Pb than many other UPb chronometers, we show how measurement of 207Pb/206Pb in texturally coeval biotite may assist in the characterization of the appropriate common Pb composition in titanite. Titanite extracted from two samples of mafic gneisses from the Akia Terrane both yield UPb ages of c. 2.54 Ga. Although coeval, their chemistry implies growth under two distinctly different processes. In one case, the titanite has elevated total REE, high Th/U and grew from an in-situ partial melt, consistent with an identical date to granite dyke zircon. In contrast, the second titanite sample contains greater common Pb, lower total REE, lower Th/U, and grew from dominantly hydrothermal fluids. Zr-in-titanite thermometry for partial melt-derived titanite, with activities constrained by phase equilibrium modelling, indicates maxima of c. 690 °C. Elsewhere in the Akia Terrane, coeval metamorphism linked to growth of hydrothermal titanite is estimated at temperatures of c. 670 °C. These new results when coupled with existing findings indicate punctuated, repeated metamorphic events in the Akia Terrane, in which high temperature conditions (re)occurred at least three times between 3.0 and 2.5 Ga, but crucially changed in style across a c. 3.0 Ga change point. We interpret this change in metamorphism as reflecting a fundamental shift in geodynamic style in West Greenland at 3.0 Ga, consistent with other estimates for the onset of widespread plate tectonic-type processes.Publisher PDFPeer reviewe

    Petrogenesis of Ni-sulfide mineralisation in the ca. 3.0 Ga Maniitsoq intrusive belt, western Greenland

    Get PDF
    The ca. 3.0 Ga Ni sulfide mineralisation at Maniitsoq, SW Greenland, is hosted by a cluster of relatively small, irregularly shaped mafic-ultramafic intrusions, typically 10s of m to a few km across, that are lodged within broadly coeval gneiss. Many of the intrusions are fault bounded and fragmented so that their original sizes remain unknown. The sulfides form disseminations and sulfide matrix breccia veins displaying sharp contacts to the host intrusives. The mineralisation has relatively high Ni/Cu, with 4–10% Ni and 1–2% Cu. Correlations between Ni and Cu with sulfide content are strong, consistent with a magmatic origin of the mineralisation. PGE contents are mostly below 0.5 ppm, and Cu/Pd is typically above primitive mantle levels, interpreted to reflect equilibration of the parent magma with segregating sulfide melt prior to final magma emplacement. Sulfide segregation was likely triggered by assimilation of crustal sulfur, as suggested by whole rock S/Se ratios of 7000–9000. The sulfide melt underwent extensive fractionation after final emplacement, caused by downward percolation of Cu-rich sulfide melt through incompletely solidified cumulates. We suggest that the exposed Maniitsoq intrusions represent the Ni-rich upper portions of magma conduits implying that there is potential for Cu-rich sulfides in unexposed deeper portions of the belt

    The Mesoarchaean Akia terrane, West Greenland, revisited : new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Get PDF
    NJG thanks Australian Research Council grant FL160100168 for financial support.The northern part of the North Atlantic Craton (NAC) in southern West Greenland comprises a large tract of exposed Meso-Neoarchaean continental crust, divided into the ca 3300–2900 Ma Akia and ca 2900–2500 Ma Tuno terranes. We combine aeromagnetic, stream sediment geochemical, new litho-chemical and zircon geochronological data with previously published data to re-evaluate the crustal architecture and evolution of the Akia terrane and its boundary towards the Tuno terrane. The previously recognised, but overlooked, Alanngua complex, situated between the Akia and Tuno terranes is bounded by aeromagnetic lineaments interpreted as Neoarchaean shear zones and has a distinct spectrum of Neoarchaean magmatic and metamorphic zircon ages that are rare in the Akia terrane. The Alanngua complex comprises components derived from both the Akia and Tuno terranes and is interpreted as a tectonic melange created during the Neoarchaean assembly of the NAC. Within the Akia terrane, the chemistry of orthogneiss samples indicate that a large percentage is too mafic to classify as TTG s.s., implying that not only partial melting of mafic crust, but also some yet unaddressed mantle involvement is necessary in their formation. Previous models for the generation of the ca. 3015–2990 Ma quartz-dioritic Finnefjeld and Taserssuaq complexes conflict with their geochemical variation. The complexes are spatially associated with strong aeromagnetic responses that are interpreted to reflect a large gabbro-diorite intrusion, and we propose that the protoliths of the Finnefjeld and Taserssuaq complexes are genetically linked to such intrusion. Formed at same time are carbonatite, high-Mg gabbro and tonalite-trondhjemite, and we propose that this wide spectrum of rocks could have formed by lithospheric and crustal melting in response to asthenospheric upwelling possibly in an extensional setting. Periods of extensive magmatism in the Akia terrane were previously recognised at ca. 3220-3180 Ma and 3070-2970 Ma. We now subdivide the latter period into three episodes: juvenile basaltic-andesitic volcanism at 3070–3050 Ma; tonalitic and dioritic plutonism at 3050–3020 Ma, and gabbroic-dioritic plus tonalitic-trondhjemitic plutonism at 3020–2985 Ma. This last episode was immediately followed by crustal reworking during collision at 2980–2950 Ma.Publisher PDFPeer reviewe

    Differentiating between inherited and autocrystic zircon in granitoids

    Get PDF
    The Maniitsoq map project is supported by the Ministry of Mineral Resources, Government of Greenland. The LA-ICP-MS instruments in the JdLC were funded via an Australian Geophysical Observing System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment Fund program.Inherited zircon, crystals that did not form in situ from their host magma but were incorporated from either the source region or assimilated from the wall-rock, is common but can be difficult to identify. Age, chemical and/or textural dissimilarity to the youngest zircon fraction are the primary mechanisms of distinguishing such grains. However, in Zr-undersaturated magmas, the entire zircon population may be inherited and, if not identifiable via textural constraints, can lead to erroneous interpretation of magmatic crystallization age and magma source. Here, we present detailed field mapping of cross-cutting relationships, whole-rock geochemistry and zircon textural, U-Pb and trace element data of trondhjemite, granodiorite and granite from two localities in a complex Archean gneiss terrane in southwest Greenland, which reveal cryptic zircon inheritance. Zircon textural, U–Pb and trace element data demonstrate that, in both localities, trondhjemite is the oldest rock (3011 ± 5 Ma, 2σ), which is intruded by granodiorite (2978 ± 4 Ma, 2σ). However, granite intrusions, constrained by cross-cutting relationships as the youngest component, only contain inherited zircon derived from trondhjemite and granodiorite based on ages and trace element concentrations. Without age constraints on the older two lithologies, it would be tempting to consider the youngest zircon fraction as recording crystallization of the granite but this would be erroneous. Furthermore, whole-rock geochemistry indicates that the granite contains only 6 µg g-1 Zr, extremely low for a granitoid with ∼77 wt. % SiO2. Such low Zr concentration explains the lack of autocrystic zircon in the granite. We expand on a differentiation tool that uses Th/U ratios in zircon versus that in the whole rock to aid in the identification of inherited zircon. This work emphasizes the need for field observations, geochemistry, grain characterization, and precise geochronology to accurately determine igneous crystallization ages and differentiate between inherited and autocrystic zircon.PostprintPeer reviewe

    Sorption and fractionation of dissolved organic matter and associated phosphorus in agricultural soil

    Get PDF
    Molibility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from oils to surface waters. To study the sorption an mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agircultural Humic Hapludult was investigated and a kinetic model applicable in field-scale model tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrtions (0-4.7 mmol L-1). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L-1, the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium". The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics

    Building Mesoarchaean crust upon Eoarchaean roots : the Akia Terrane, West Greenland

    Get PDF
    The Maniitsoq project is supported by the Ministry of Mineral Resources and Labour, Government of Greenland. NJG thanks Curtin University and Australian Research Council grant FL160100168 for financial support.Constraining the source, genesis, and evolution of Archaean felsic crust is key to understanding the growth and stabilization of cratons. The Akia Terrane, part of the North Atlantic Craton, West Greenland, is comprised of Meso-to-Neoarchaean orthogneiss, with associated supracrustal rocks. We report zircon U–Pb and Lu–Hf isotope data, and whole-rock geochemistry, from samples of gneiss and supracrustals from the northern Akia Terrane, including from the Finnefjeld Orthogneiss Complex, which has recently been interpreted as an impact structure. Isotope data record two major episodes of continental crust production at ca. 3.2 and 3.0 Ga. Minor ca. 2.7 and 2.5 Ga magmatic events have more evolved εHf, interpreted as reworking of existing crust perhaps linked to terrane assembly. Felsic rocks from the Finnefjeld Orthogneiss Complex were derived from the same source at the same time as the surrounding tonalites, but from shallower melting, requiring any bolide-driven melting event to have occurred almost simultaneously alongside the production of the surrounding crust. A simpler alternative has the Finnefjeld Complex and surrounding tonalite representing the coeval genesis of evolved crust over a substantial lithospheric depth. Hafnium isotope data from the two major Mesoarchaean crust-forming episodes record a contribution from older mafic Eoarchaean crust. Invoking the involvement of an Eoarchaean root in the growth of younger Mesoarchaean crust puts important constraints on geodynamic models of the formation of the discrete terranes that ultimately assembled to form Earth’s cratons.Publisher PDFPeer reviewe

    Regional zircon U-Pb geochronology for the Maniitsoq region, southwest Greenland

    Get PDF
    The Ministry of Mineral Resources, Government of Greenland, funded this project. Analyses in the JdLC GeoHistory Facility were enabled by instrumentation supported by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy. The Tescan Mira3 FEG-SEM was funded through the Australian Research Council LIEF program.Zircon U-Pb geochronology places high-temperature geological events into temporal context. Here, we present a comprehensive zircon U-Pb geochronology dataset for the Meso- to Neoarchean Maniitsoq region in southwest Greenland, which includes the Akia Terrane, Tuno Terrane, and the intervening Alanngua Complex. The magmatic and metamorphic processes recorded in these terranes straddle a key change-point in early Earth geodynamics. This dataset comprises zircon U-Pb ages for 121 samples, including 46 that are newly dated. A principal crystallization peak occurs across all three terranes at ca. 3000 Ma, with subordinate crystallization age peaks at 3200 Ma (Akia Terrane and Alanngua Complex only), 2720 Ma and 2540 Ma. Metamorphic age peaks occur at 2990 Ma, 2820-2700 Ma, 2670-2600 Ma and 2540 Ma. Except for one sample, all dated metamorphic zircon growth after the Neoarchean occurred in the Alanngua Complex or within 20 km of its boundaries. This U-Pb dataset provides an important resource for addressing Earth Science topics as diverse as crustal evolution, fluid-rock interaction and mineral deposit genesis.Publisher PDFPeer reviewe
    • …
    corecore