40 research outputs found

    Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA

    Get PDF
    RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large messenger ribonucleoprotein particle (mRNP) assemblies, these proteins often function in. Using UV-induced RNA-protein crosslinking and subsequent mass spectrometric analysis, we first identified more than 100 in vivo RNA crosslinks in 16 nuclear mRNP components in S. cerevisiae. For functional analysis, we chose Npl3, for which we determined crosslinks in its two RNA recognition motifs (RRM) and in the flexible linker region connecting the two. Using NMR and structural analyses, we show that both RRM domains and the linker uniquely contribute to RNA recognition. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains of Npl3. Notably, the npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of further mRNP components into nuclear mRNPs, establishing a function of Npl3 in nuclear mRNP assembly. Taken together, we determined the specific function of the RNA-binding activity of the nuclear mRNP component Npl3, an approach that can be applied to many RBPs in any RNA metabolic process

    Npl3 functions in mRNP assembly by recruitment of mRNP components to the transcription site and their transfer onto the mRNA

    Get PDF
    RNA-binding proteins (RBPs) control every RNA metabolic process by multiple protein-RNA and protein-protein interactions. Their roles have largely been analyzed by crude mutations, which abrogate multiple functions at once and likely impact the structural integrity of the large ribonucleoprotein particles (RNPs) these proteins function in. Using UV-induced RNA-protein crosslinking of entire cells, protein complex purification and mass spectrometric analysis, we identified >100 in vivo RNA crosslinks in 16 nuclear mRNP components in Saccharomyces cerevisiae. For functional analysis, we chose Npl3, which displayed crosslinks in its two RNA recognition motifs (RRMs) and in the connecting flexible linker region. Both RRM domains and the linker uniquely contribute to RNA recognition as revealed by NMR and structural analyses. Interestingly, mutations in these regions cause different phenotypes, indicating distinct functions of the different RNA-binding domains. Notably, an npl3-Linker mutation strongly impairs recruitment of several mRNP components to chromatin and incorporation of other mRNP components into nuclear mRNPs, establishing a so far unknown function of Npl3 in nuclear mRNP assembly. Taken together, our integrative analysis uncovers a specific function of the RNA-binding activity of the nuclear mRNP component Npl3. This approach can be readily applied to RBPs in any RNA metabolic process

    The Ccr4-Not Complex Interacts with the mRNA Export Machinery

    Get PDF
    The Ccr4-Not complex is a key eukaryotic regulator of gene transcription and cytoplasmic mRNA degradation. Whether this complex also affects aspects of post-transcriptional gene regulation, such as mRNA export, remains largely unexplored. Human Caf1 (hCaf1), a Ccr4-Not complex member, interacts with and regulates the arginine methyltransferase PRMT1, whose targets include RNA binding proteins involved in mRNA export. However, the functional significance of this regulation is poorly understood.Here we demonstrate using co-immunoprecipitation approaches that Ccr4-Not subunits interact with Hmt1, the budding yeast ortholog of PRMT1. Furthermore, using genetic and biochemical approaches, we demonstrate that Ccr4-Not physically and functionally interacts with the heterogenous nuclear ribonucleoproteins (hnRNPs) Nab2 and Hrp1, and that the physical association depends on Hmt1 methyltransferase activity. Using mass spectrometry, co-immunoprecipitation and genetic approaches, we also uncover physical and functional interactions between Ccr4-Not subunits and components of the nuclear pore complex (NPC) and we provide evidence that these interactions impact mRNA export.Taken together, our findings suggest that Ccr4-Not has previously unrealized functional connections to the mRNA processing/export pathway that are likely important for its role in gene expression. These results shed further insight into the biological functions of Ccr4-Not and suggest that this complex is involved in all aspects of mRNA biogenesis, from the regulation of transcription to mRNA export and turnover

    Falling for the dark side of transcription: Nab2 fosters RNA polymerase III transcription.

    No full text
    RNA polymerase III (RNAPIII) synthesizes diverse, small, non-coding RNAs with many important roles in the cellular metabolism. One of the open questions of RNAPIII transcription is whether and how additional factors are involved. Recently, Nab2 was identified as the first messenger ribonucleoprotein particle (mRNP) biogenesis factor with a function in RNAPIII transcription

    Research on Dynamic Geometry Software (DGS)—an introduction

    No full text

    Ctk1 function is necessary for full translation initiation activity in <em>Saccharomyces cerevisiae</em>.

    No full text
    Translation is a fundamental and highly regulated cellular process. Previously, we reported that the kinase and transcription elongation factor Ctk1 increases fidelity during translation elongation in Saccharomyces cerevisiae. Here, we show that loss of Ctk1 function also affects the initiation step of translation. Translation active extracts from Ctk1 depleted cells show impaired translation activity of capped, but not CrPV IRES containing mRNA reporters. Furthermore, the formation of 80S initiation complexes is decreased, which is probably due to reduced subunit joining. In addition, we determined the changes in the phosphorylation pattern of a ribosome enriched fraction after depletion of Ctk1. Thus, we provide a catalogue of phosphoproteomic changes dependent on Ctk1. Taken together, our data suggest a stimulatory function of Ctk1 in 80S formation during translation initiation
    corecore